unity使用百度AI实现人脸融合

这篇具有很好参考价值的文章主要介绍了unity使用百度AI实现人脸融合。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

准备工作:前往百度AI网页注册账号,百度AI开放平台-全球领先的人工智能服务平台

在开放能力平台,能找到想要的功能介绍,然后要创建一个应用,需要用到ak和sk,百度AI开发里边介绍比较清楚,这里就不赘述了。

开发逻辑  调用摄像头 -> 截取一帧画面  -> 上传百度AI云融合  ->  返回融合结果显示

首先呢,需要创建一个WebCamera类,完善摄像头的各种功能。

/// <summary>
/// 简单的摄像头单例类,挂载在场景物体上
/// </summary>
public class WebCamera : MonoBehaviour
{    
    public static WebCamera Instance;
    /// <summary>
    /// 当前摄像头下标,存在多个摄像头设备时用于切换功能
    /// </summary>
    private int curCamIndex = 0;
    /// <summary>
    /// 所有摄像头设备列表
    /// </summary>
    private WebCamDevice[] devices;
    /// <summary>
    /// 摄像头渲染纹理
    /// </summary>
    private WebCamTexture webCamTex;
    /// <summary>
    /// 当前设备的名称
    /// </summary>
    public string deviceName { get; private set; }
    /// <summary>
    /// 摄像头是否打开
    /// </summary>
    public bool CameraIsOpen { get; private set; }
    /// <summary>
    /// 最终渲染画面
    /// </summary>
    public Texture renderTex { get; private set; }

    /// <summary>
    /// 最新的截图
    /// </summary>
    public Texture2D lastShotText { get; private set; }
    /// <summary>
    /// 画面的宽高
    /// </summary>
    private int width,height;
    /// <summary>
    /// 帧率
    /// </summary>
    private int fps;

    void Awake()
    {
        Instance = this;
    }

    public void InitCamera(int width,int height,int fps=30)
    {        
        this.width = width;
        this.height = height;
        this.fps = fps;
    }

    /// <summary>
    /// 打开摄像头
    /// </summary>
    public void OpenCamera()
    {
        //用户授权
        if (Application.HasUserAuthorization(UserAuthorization.WebCam))
        {
            //显示画面的设备就是要打开的摄像头
            devices = WebCamTexture.devices;
            if (devices.Length <= 0)
            {
                Debug.LogError("没有检测到摄像头,检查设备是否正常"); return;
            }
            deviceName = devices[curCamIndex].name;
            webCamTex = new WebCamTexture(deviceName, width,height,fps);

            renderTex = webCamTex;
            //开启摄像头
            webCamTex.Play();
            CameraIsOpen = true;
        }
    }

    /// <summary>
    /// 关闭摄像头
    /// </summary>
    public void CloseCamera()
    {
        if (CameraIsOpen && webCamTex != null)
        {
            webCamTex.Stop();
            CameraIsOpen=false;
        }
    }
    /// <summary>
    /// 切换摄像头
    /// </summary>
    public void SwapCamera()
    {
        if (devices.Length > 0)
        {
            curCamIndex = (curCamIndex + 1) % devices.Length;
            if (webCamTex!= null)
            {
                CloseCamera();
                OpenCamera();
            }
        }
    }

    public void SaveScreenShot(string path)
    {
        Texture2D shotTex = TextureToTexture2D(webCamTex);
        lastShotText = shotTex;
        byte[] textureBytes = shotTex.EncodeToJPG();
        string fileName = string.Format("IMG_{0}{1}{2}_{3}{4}{5}.jpg",DateTime.Now.Year,DateTime.Now.Month,
            DateTime.Now.Day,DateTime.Now.Hour,DateTime.Now.Minute,DateTime.Now.Second);
        if (!Directory.Exists(path))
        {
            Directory.CreateDirectory(path);
        }
        Debug.Log($"图片已保存:{path}/{fileName}");
        File.WriteAllBytes($"{ path}/{fileName}", textureBytes);
        if (File.Exists($"{path}/{fileName}"))
        {
            Debug.Log("找到照片");
        }
        else
        {
            Debug.Log("未找到");
        }
    }


    /// <summary>
    /// Texture转换成Texture2D
    /// </summary>
    /// <param name="texture"></param>
    /// <returns></returns>
    private Texture2D TextureToTexture2D(Texture texture)
    {
        Texture2D texture2D = new Texture2D(texture.width, texture.height, TextureFormat.RGBA32, false);
        RenderTexture currentRT = RenderTexture.active;
        RenderTexture renderTexture = RenderTexture.GetTemporary(texture.width, texture.height, 32);
        Graphics.Blit(texture, renderTexture);

        RenderTexture.active = renderTexture;
        texture2D.ReadPixels(new Rect(0, 0, renderTexture.width, renderTexture.height), 0, 0);
        texture2D.Apply();

        RenderTexture.active = currentRT;
        RenderTexture.ReleaseTemporary(renderTexture);

        return texture2D;
    }
    
}

创建一个脚本AssessToken,用来获取token,官网示例中返回的是一个token对象,需要再次解析。clientAK和clientSk需要写自己申请的应用的ak和sk

 public static class AccessToken
    {
        //调用GetAccessToken()获取的access_token建议根据expires_in时间 设置缓存

        //百度云中开通对应服务应用的API Key建议开通应用的时候多选服务
        private static string clientAk = "***********************";

        //百度云中开通对应服务应用的 Secret Key
        private static string clientSk = "****************************";

        public static string GetAssessToken()
        {
            string authHost = "https://aip.baidubce.com/oauth/2.0/token";
            HttpClient client = new HttpClient();
            List<KeyValuePair<string, string>> paraList = new List<KeyValuePair<string, string>>();
            paraList.Add(new KeyValuePair<string, string>("grant_type", "client_credentials"));
            paraList.Add(new KeyValuePair<string, string>("client_id", clientAk));
            paraList.Add(new KeyValuePair<string, string>("client_secret", clientSk));

            HttpResponseMessage response = client.PostAsync(authHost, new FormUrlEncodedContent(paraList)).Result;
            string result = response.Content.ReadAsStringAsync().Result;
            TokenInfo tokenInfo = JsonUtility.FromJson<TokenInfo>(result);
            return tokenInfo.access_token;
        }

        public class TokenInfo
        {
            public string refresh_token;
            public string access_token;
        }

    }

创建一个FaceMerge,用来请求人脸融合的API,当然也可以丰富更多的功能

 public class FaceMerge : MonoBehaviour
    {
        public static FaceMerge Instance;
        private void Awake()
        {
            Instance = this;
        }

        //人脸融合

        public void PostFaceMerge(string json, UnityAction<string> sucessResponse, UnityAction<string> errorRes = null)
        {
            StartCoroutine(IPostFaceMerge(json, sucessResponse, errorRes));
        }

        private IEnumerator IPostFaceMerge(string json, UnityAction<string> sucessResponse, UnityAction<string> errorRes = null)
        {
            string token = AccessToken.GetAssessToken();
            string url = "https://aip.baidubce.com/rest/2.0/face/v1/merge?access_token=" + token;
            using (UnityWebRequest request = new UnityWebRequest(url, "POST"))
            {
                Encoding encoding = Encoding.Default;
                byte[] buffer = encoding.GetBytes(json);
                request.uploadHandler = new UploadHandlerRaw(buffer);
                request.downloadHandler = new DownloadHandlerBuffer();
                yield return request.SendWebRequest();
                if (request.result == UnityWebRequest.Result.Success)
                {
                    sucessResponse?.Invoke(request.downloadHandler.text);
                    request.Abort();
                }
                else
                {
                    errorRes?.Invoke(request.downloadHandler.text);
                    request.Abort();
                }
            }
        }

        public Texture2D Base64ToTexture2D(int width,int height,string base64Str)
        {
            Texture2D pic = new Texture2D(width, height, TextureFormat.RGBA32, false);
            byte[] data = System.Convert.FromBase64String(base64Str);
            pic.LoadImage(data);
            return pic;
        }

        public string Texture2DToBase64(Texture2D tex2d)
        {
            byte[] bytes = tex2d.EncodeToJPG();           
            string strBase64 = Convert.ToBase64String(bytes);
            return strBase64;
        }
    }

需要一个Response类反序列化返回的结果

public class Response
{
    public int error_code;
    public string error_msg;
    public long log_id;
    public long timestamp;
    public int cached;
    public Result result;
}

public class Result
{
    public string merge_image;
}

创建一个Test测试类,调试功能,里边json解析的时候,用到了一个JsonMapper的类,这个类是在LitJson插件中的,需要大家自行下载。

public class Test : MonoBehaviour
{
    /// <summary>
    /// 显示相机渲染的画面
    /// </summary>
    [SerializeField] RawImage rawImg;
    /// <summary>
    /// 融合模板图
    /// </summary>
    [SerializeField] Texture2D targetFusionTex;
    /// <summary>
    /// 融合结果显示
    /// </summary>
    [SerializeField] RawImage resultImg;
    /// <summary>
    /// 截图保存的路径
    /// </summary>
    private string path;
    void Start()
    {
        path = Application.streamingAssetsPath + "/";
        WebCamera.Instance.InitCamera(800,600);
        WebCamera.Instance.OpenCamera();
        rawImg.texture = WebCamera.Instance.renderTex;
    }

    private void FunsionFace()
    {
        WebCamera.Instance.SaveScreenShot(path);
        var curTex = WebCamera.Instance.lastShotText;

        //序列化字典内容到json格式 上传到百度ai
        Dictionary<string,object> dict = new Dictionary<string,object>();
        dict.Add("version","4.0");
        dict.Add("alpha",0);
        ImageInfo imgTemplate = new ImageInfo();
        imgTemplate.image = FaceMerge.Instance.Texture2DToBase64(targetFusionTex);
        imgTemplate.image_type = "BASE64";
        imgTemplate.quality_control = "NONE";
        dict.Add("image_template", imgTemplate);
        ImageInfo imgTarget = new ImageInfo();
        imgTarget.image = FaceMerge.Instance.Texture2DToBase64(curTex);
        imgTarget.image_type = "BASE64";
        imgTarget.quality_control = "NONE";
        dict.Add("image_target",imgTarget);
        dict.Add("merge_degree", "COMPLETE");

        string json = JsonMapper.ToJson(dict); // 反序列化用了 litjson的工具,使用JsonUtility序列化dict会是空的

        FaceMerge.Instance.PostFaceMerge(json, OnFaceMerge);

    }
    

    private void OnFaceMerge(string info)
    {
        Debug.Log(info);
        Response response = JsonMapper.ToObject<Response>(info);
        if (response.error_code == 0) // 0 表示成功融合图片
        {
            Debug.Log(response.error_msg);

            string ImgBase64 = response.result.merge_image;

            resultImg.texture = FaceMerge.Instance.Base64ToTexture2D(targetFusionTex.width, targetFusionTex.height, ImgBase64);
        }
    }


    void Update()
    {
        if (Input.GetKeyUp(KeyCode.W))
        {
            FunsionFace();
        }
    }

    public class ImageInfo
    {
        public string image; //图片信息
        public string image_type; //图片类型 BASE64 URL FACE_TOKEN
        public string quality_control; //质量控制 NONE LOW NORMAL HIGH HIGH
    }
}

csdn资源链接地址:https://download.csdn.net/download/qq_40666661/87704717不需要积分就可以下载

百度网盘:链接:https://pan.baidu.com/s/1LTqsc8bxf69RZAWWB9Nw0Q?pwd=heyo 
提取码:heyo 文章来源地址https://www.toymoban.com/news/detail-774224.html

到了这里,关于unity使用百度AI实现人脸融合的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包