深入理解强化学习——马尔可夫决策过程:动态规划方法

这篇具有很好参考价值的文章主要介绍了深入理解强化学习——马尔可夫决策过程:动态规划方法。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

分类目录:《深入理解强化学习》总目录


动态规划(Dynamic Programming,DP)适合解决满足最优子结构(Optimal Substructure)和重叠子问题(Overlapping Subproblem)两个性质的问题。最优子结构意味着,问题可以拆分成一个个的小问题,通过解决这些小问题,我们能够组合小问题的答案,得到原问题的答案,即最优的解。重叠子问题意味着,子问题出现多次,并且子问题的解决方案能够被重复使用,我们可以保存子问题的首次计算结果,在再次需要时直接使用。

马尔可夫决策过程是满足动态规划的要求的,在贝尔曼方程里面,我们可以把它分解成递归的结构。当我们把它分解成递归的结构的时候,如果子问题的子状态能得到一个值,那么它的未来状态因为与子状态是直接相关的,我们也可以将之推算出来。价值函数可以存储并重用子问题的最佳的解。动态规划应用于马尔可夫决策过程的规划问题而不是学习问题,我们必须对环境是完全已知的,才能做动态规划,也就是要知道状态转移概率和对应的奖励。使用动态规划完成预测问题和控制问题的求解,是解决马尔可夫决策过程预测问题和控制问题的非常有效的方式。动态规划方法在强化学习中的应用可以参考后续文章《深入理解强化学习——动态规划算法》

参考文献:
[1] 张伟楠, 沈键, 俞勇. 动手学强化学习[M]. 人民邮电出版社, 2022.
[2] Richard S. Sutton, Andrew G. Barto. 强化学习(第2版)[M]. 电子工业出版社, 2019
[3] Maxim Lapan. 深度强化学习实践(原书第2版)[M]. 北京华章图文信息有限公司, 2021
[4] 王琦, 杨毅远, 江季. Easy RL:强化学习教程 [M]. 人民邮电出版社, 2022文章来源地址https://www.toymoban.com/news/detail-774457.html

到了这里,关于深入理解强化学习——马尔可夫决策过程:动态规划方法的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 人工智能专栏第十讲——马尔可夫决策过程

    马尔可夫决策过程(Markov Decision Process, MDP)是一类用于描述决策问题的数学模型。该模型可以将决策问题的状态、决策、动作、收益等概念进行形式化,并通过数学方法进行求解,得到一个最优的决策策略。马尔可夫决策过程广泛应用于智能控制、机器学习、人工智能等领域

    2024年02月08日
    浏览(40)
  • 深入理解机器学习——概率图模型(Probabilistic Graphical Model):马尔可夫随机场(Markov Random Field,MRF)

    分类目录:《深入理解机器学习》总目录 马尔可夫随机场(Markov Random Field,MRF)是典型的马尔可夫网,这是一种著名的无向图模型,图中每个结点表示一个或一组变量,结点之间的边表示两个变量之间的依赖关系。马尔可夫随机场有一组势函数(Potential Functions),亦称“因

    2024年02月12日
    浏览(48)
  • 强化学习从基础到进阶-案例与实践[2]:马尔科夫决策、贝尔曼方程、动态规划、策略价值迭代

    【强化学习原理+项目专栏】必看系列:单智能体、多智能体算法原理+项目实战、相关技巧(调参、画图等、趣味项目实现、学术应用项目实现 专栏详细介绍 :【强化学习原理+项目专栏】必看系列:单智能体、多智能体算法原理+项目实战、相关技巧(调参、画图等、趣味项

    2024年02月15日
    浏览(135)
  • 基于应用值迭代的马尔可夫决策过程(MDP)的策略的机器人研究(Matlab代码实现)

     💥💥💞💞 欢迎来到本博客 ❤️❤️💥💥 🏆博主优势: 🌞🌞🌞 博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️ 座右铭: 行百里者,半于九十。 📋📋📋 本文目录如下: 🎁🎁🎁 目录 💥1 概述 📚2 运行结果 🎉3 参考文献 🌈4 Matlab代码实现 MDP(

    2024年02月15日
    浏览(42)
  • 强化学习从基础到进阶-常见问题和面试必知必答[2]:马尔科夫决策、贝尔曼方程、动态规划、策略价值迭代

    马尔可夫性质(Markov property,MP) :如果某一个过程未来的状态与过去的状态无关,只由现在的状态决定,那么其具有马尔可夫性质。换句话说,一个状态的下一个状态只取决于它的当前状态,而与它当前状态之前的状态都没有关系。 马尔可夫链(Markov chain) : 概率论和数

    2024年03月26日
    浏览(51)
  • 马尔科夫决策过程-策略迭代与值迭代(基于动态规划)

    强化学习入门笔记,基于easy RL RL基础 强化学习(reinforcement learning,RL):智能体可以在与复杂且不确定的环境进行交互时,尝试使所获得的奖励最大化的算法。 动作(action): 环境接收到的智能体基于当前状态的输出。 状态(state):智能体从环境中获取的状态。 奖

    2024年02月04日
    浏览(45)
  • 马尔可夫链:随机过程的数学建模及MATLAB实现

    目录 1. 马尔可夫链简介 1.1. 马尔可夫性质 1.2. 马尔可夫链定义

    2024年02月13日
    浏览(39)
  • 【机器学习】马尔可夫链与隐马尔可夫模型(HMM)

            马尔可夫链(Markov chain),又称离散时间马尔可夫链(discrete-time Markov chain),因俄国数学家安德烈·马尔可夫(A.A.Markov)得名。描述的是状态空间中经过从一个状态到另一个状态的转换的 随机过程 。该过程要求具备“无记忆”的性质: 下一状态的概率分布只能

    2024年02月13日
    浏览(42)
  • 动态规划及马尔可夫特性最佳调度策略(Matlab完整代码实现)

    📋📋📋 本文目录如下: ⛳️⛳️⛳️ 目录 1 概述 2 Matlab代码实现 3 写在最后 动态规划是一种机器学习方法,它利用环境、计算资源和马尔可夫特性等知识来创建在环境中最佳执行的策略。有了这项强大的技术,一个看似复杂的问题就可以用几行代码来分析和解决。在本

    2024年02月13日
    浏览(39)
  • 学习笔记:马尔可夫模型

    安德雷·马尔可夫(Andrey Markov),俄国数学家,在概率论、数理统计和随机过程等领域做出了重要贡献,20世纪初期提出了一种数学模型,即马尔可夫过程Markov Process),用于描述具有“无记忆性”的随机过程。 马尔可夫性质(Markov Property)是概率论中的一个概念,它是指一个随

    2024年02月04日
    浏览(46)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包