5.如何利用ORBSLAM3生成可用于机器人/无人机导航的二维/三维栅格地图--以octomap为例

这篇具有很好参考价值的文章主要介绍了5.如何利用ORBSLAM3生成可用于机器人/无人机导航的二维/三维栅格地图--以octomap为例。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1 octomap的安装及官方文档

        这里我们用ROS自带的安装方式即可:

sudo apt install ros-melodic-octomap-msgs ros-melodic-octomap-ros ros-melodic-
octomap-rviz-plugins ros-melodic-octomap-server

        如上图就是安装成功了:

orbslam3如何进行导航,如何用ORBSLAM3进行稠密建图用于路径规划,机器人,算法,自动驾驶

        如果安装失败了,尝试用小鱼ROS换一下源再去安装:

        一些官方的文档如下,大家感兴趣可以学习一下:https://octomap.github.io/octomap/doc/index.html#gettingstarted_sechttps://octomap.github.io/octomap/doc/index.html#gettingstarted_sec

2 如何利用ORBSLAM3生成的地图点通过octomap构造可以用来导航的栅格地图

2.1 octomap节点的编写

        在我们装了octomap后,我们建立一个launch文件,这里都是固定的,我就来给大家解释一下文件的各个参数的含义吧。

        我们建立一个slam.launch文件:

<launch>

    <!-- Octomap Server Node -->
    <node pkg="octomap_server" type="octomap_server_node" name="octomap_server">
        <param name="resolution" value="0.05" />
        <param name="frame_id" type="string" value="/orb_cam_link" />
        <param name="sensor_model/max_range" value="5.0" />
        <remap from="cloud_in" to="/ORB_SLAM3/Point_Clouds" />
        <param name="sensor_model/max_range" value="5000.0" />
        <param name="latch" value="true" />
        <param name="pointcloud_min_z" type="double" value="-1.5" />
        <param name="pointcloud_max_z" type="double" value="10" />
        <param name="occupancy_min_z" type="double" value="0.1" />
        <param name="occupancy_max_z" type="double" value="2" />
        <param name="height_map" type="bool" value="False" />
        <param name="colored_map" value="true" />
    </node>
    <node pkg="tf" type="static_transform_publisher" name="orb_cam_link" args="0 0 0.15 0 0 0 /orb_cam_link /pointCloud 70" />
    <!-- rviz -->
    <node pkg="rviz" type="rviz" name="rviz" args="-d $(find akm_pnc)/rviz/grid.rviz" />
</launch>

        建立一个Octomap Server Node节点。

        这个参数文件是一个ROS launch文件,它定义了启动和配置了几个节点和参数,主要是针对 Octomap Server、静态 TF 变换发布器和 RViz 可视化工具的配置。

让我解释其中的一些关键部分:

1. **Octomap Server Node**:
    - `pkg="octomap_server"` 和 `type="octomap_server_node"` 指定了要运行的节点以及其所在的软件包。
    - `name="octomap_server"` 定义了节点的名称。
    - `param` 标签下的各个 `name` 参数设置了 Octomap Server 的一些参数:
        - `resolution` 设置了地图分辨率为 0.05。
        - `frame_id` 设置了地图的坐标系为 `/orb_cam_link`。
        - `sensor_model/max_range` 设置了传感器模型的最大范围为 5.0。
        - `latch` 设为 `true`,意味着参数会被持久化,即在重新加载时保留先前设置的参数值。
        - 其他参数如 `pointcloud_min_z`、`pointcloud_max_z`、`occupancy_min_z`、`occupancy_max_z` 用于设置点云和占据地图的高度范围等参数。
        - `colored_map` 设置了地图是否包含颜色信息。

2. **TF 静态变换发布器**:
    - `node` 标签下定义了一个 `static_transform_publisher` 节点,用于发布静态的 TF 变换。
    - `name="orb_cam_link"` 定义了发布节点的名称。
    - `args` 包含了发布的静态变换的参数:位置 (0, 0, 0.15)、旋转 (0, 0, 0) 以及目标坐标系和源坐标系的名称 `/orb_cam_link` 和 `/pointCloud`。
 
3. **RViz**:
    - 最后一个节点启动了 RViz 工具,指定了加载一个配置文件 `grid.rviz`。

总体而言,这个 launch 文件配置了 Octomap Server 用于构建地图,并设置了一些传感器模型、地图分辨率以及静态 TF 变换的发布,最后启动了 RViz 工具以可视化地图和其他相关数据。

        这里需要注意的!!非常重要的参数有两个!!

        第一个是:to后面要放入自己的点云话题

        <remap from="cloud_in" to="/ORB_SLAM3/Point_Clouds" />

        第二个是frame_id:看一下ROS官方给的说明(“地图将被发布的静态全局坐标系。在动态构建地图时,需要从传感器数据到该坐标系的变换信息可用。”,也就是说,地图会被发布到一个固定的全局坐标系中。在创建地图的过程中,需要能够获得传感器数据与这个全局坐标系之间的转换信息。)

octomap_server - ROS Wikihttp://wiki.ros.org/octomap_server

        <param name="frame_id" type="string" value="/orb_cam_link" />

orbslam3如何进行导航,如何用ORBSLAM3进行稠密建图用于路径规划,机器人,算法,自动驾驶

orbslam3如何进行导航,如何用ORBSLAM3进行稠密建图用于路径规划,机器人,算法,自动驾驶

        下面我们来看ORB-SLAM3的部分怎么修改吧!

2.2 ORB-SLAM3发布栅格地图数据

2.2.1 理解坐标系/orb_cam_link、/odom

        我们控制仿真程序向前走。

        这是初始的状态:

orbslam3如何进行导航,如何用ORBSLAM3进行稠密建图用于路径规划,机器人,算法,自动驾驶

        目前的坐标系为orb_cam_link。我们控制仿真程序向前走一段距离。orbslam3如何进行导航,如何用ORBSLAM3进行稠密建图用于路径规划,机器人,算法,自动驾驶

        我们发现,栅格地图生成了一部分。有尾部的绿线是我们的轨迹。它的话题为/RGBD/Path

orbslam3如何进行导航,如何用ORBSLAM3进行稠密建图用于路径规划,机器人,算法,自动驾驶

        但是我们如果换成坐标系为odom呢??一直在原点不动了。

orbslam3如何进行导航,如何用ORBSLAM3进行稠密建图用于路径规划,机器人,算法,自动驾驶        因此,我们估计到的Tcw其实就是orb_cam_link到odom坐标系的变换矩阵。orbslam3如何进行导航,如何用ORBSLAM3进行稠密建图用于路径规划,机器人,算法,自动驾驶

        这里的track_point和all_point是追踪的地图点和所有的地图点,如上图彩色的部分和白色的部分。

2.2.2 稠密建图代码详解 如何发送全部稠密点云给octomap

        <remap from="cloud_in" to="/ORB_SLAM3/Point_Clouds" />

        这里我们接收/ORB_SLAM3/Point_Clouds类型的点云进行稠密重建,那么需要稠密点云进行输入。

        我们在稠密建图的线程中新添加一个话题:

        pclPoint_pub = n.advertise<sensor_msgs::PointCloud2>("/ORB_SLAM3/Point_Clouds",1000000);
        pclPoint_local_pub = n.advertise<sensor_msgs::PointCloud2>("/ORB_SLAM3/Point_local_Clouds",1000000);

        我们把所有帧的稠密点云赋予给octomap:

    /**
     * @brief 根据关键帧生成点云
     * @param kf
     * @param imRGB
     * @param imD
     * @param pose
     * @return
     */
    pcl::PointCloud< PointCloudMapping::PointT >::Ptr PointCloudMapping::generatePointCloud(KeyFrame *kf,const cv::Mat& imRGB, const cv::Mat& imD, const cv::Mat& pose)
    {
        std::chrono::steady_clock::time_point t1 = std::chrono::steady_clock::now();
        PointCloud::Ptr current(new PointCloud);
        PointCloud::Ptr loop_points(new PointCloud);
        for(size_t v = 0; v < imRGB.rows ; v+=3){
            for(size_t u = 0; u < imRGB.cols ; u+=3){
                cv::Point2i pt(u,v);
                bool isDynamic = false;
                float d = imD.ptr<float>(v)[u];
                if(d < 0.1 || d>15)
                    continue;
                PointT p;
                p.z = d;
                p.x = ( u - mCx) * p.z / mFx;
                p.y = ( v - mCy) * p.z / mFy;
                p.b = imRGB.ptr<uchar>(v)[u*3];
                p.g = imRGB.ptr<uchar>(v)[u*3+1];
                p.r = imRGB.ptr<uchar>(v)[u*3+2];
                current->points.push_back(p);
                loop_points->points.push_back(p);
            }
        }
        Eigen::Isometry3d T = Converter::toSE3Quat( pose );
        PointCloud::Ptr tmp(new PointCloud);
        // tmp为转换到世界坐标系下的点云
        pcl::transformPointCloud(*current, *tmp, T.inverse().matrix());

        // depth filter and statistical removal,离群点剔除
        statistical_filter.setInputCloud(tmp);
        statistical_filter.filter(*current);
        (*mPointCloud) += *current;

        pcl::transformPointCloud(*mPointCloud, *tmp, T.inverse().matrix());
        // 加入新的点云后,对整个点云进行体素滤波
        voxel.setInputCloud(mPointCloud);
        voxel.filter(*tmp);
        mPointCloud->swap(*tmp);
        mPointCloud->is_dense = false;
        return loop_points;
    }
    /**
     * @brief 显示点云
     */
    void PointCloudMapping::NormalshowPointCloud()
    {
         0.PointCloude数据结构中含有什么
        // typedef pcl::PointXYZRGBA PointT;
        // typedef pcl::PointCloud<PointT> PointCloud;
        // PointCloud::Ptr pcE;
        // Eigen::Isometry3d T;
        // int pcID;
        PointCloude pointcloude;
        ros::NodeHandle n;
        pclPoint_pub = n.advertise<sensor_msgs::PointCloud2>("/ORB_SLAM3/Point_Clouds",1000000);
        pclPoint_local_pub = n.advertise<sensor_msgs::PointCloud2>("/ORB_SLAM3/Point_local_Clouds",1000000);
        ros::Rate r(5);
        /// 一直在执行
        while(true)
        {
            KeyFrame* kf;
            cv::Mat colorImg, depthImg;
            {
                std::unique_lock<std::mutex> locker(mKeyFrameMtx);
                 1.如果没有关键帧(还没有进入追踪线程,等待关键帧的加入)
                while(mvKeyFrames.empty() && !mbShutdown)
                {
                    mKeyFrameUpdatedCond.wait(locker);
                }
                {
                    unique_lock<mutex> lck( keyframeMutex );
                }
                 2.更新点云(这里代码逻辑有问题)
                if(lastKeyframeSize  == LoopKfId)
                    updatecloud();
                if (!(mvDepthImgs.size() == mvColorImgs.size() && mvKeyFrames.size() == mvColorImgs.size())) {
                    std::cout << RED << "这是不应该出现的情况!" << std::endl;
                    continue;
                }

                if (mbShutdown && mvColorImgs.empty() && mvDepthImgs.empty() && mvKeyFrames.empty()) {
                    break;
                }

                 3.取出我们应该去处理的数据
                kf = mvKeyFrames.front();
                colorImg = mvColorImgs.front();
                depthImg = mvDepthImgs.front();
                mvKeyFrames.pop();
                mvColorImgs.pop();
                mvDepthImgs.pop();
            }

            if (mCx==0 || mCy==0 || mFx==0 || mFy==0)
            {
                mCx = kf->cx;
                mCy = kf->cy;
                mFx = kf->fx;
                mFy = kf->fy;
            }

            {
                std::unique_lock<std::mutex> locker(mPointCloudMtx);
                 4.获得关键帧的位姿
                cv::Mat mTcw_Mat = kf->GetPoseMat();
                 5.pcE中存放点云数据,已经被转化到世界坐标系下了
                pointcloude.pcE=generatePointCloud(kf,colorImg, depthImg, mTcw_Mat);
                 6.存放关键帧的ID
                pointcloude.pcID = kf->mnId;
                 7.存放关键帧的位姿
                pointcloude.T = ORB_SLAM3::Converter::toSE3Quat(mTcw_Mat);

                pointcloud.push_back(pointcloude);
                if(pointcloude.pcE->empty())
                    continue;

                 8.这帧的点云
                pcl_cloud_local_kf = *pointcloude.pcE;
                 9.所有的点云
                pcl_cloud_kf = *mPointCloud;

                 10.转换到ROS坐标系下
                Cloud_transform(pcl_cloud_local_kf,pcl_local_filter);
                Cloud_transform(pcl_cloud_kf,pcl_filter);

                 11.转化为ROS格式的点云
                pcl::toROSMsg(pcl_local_filter, pcl_local_point);

                // TODO 发布给octomap
                pcl::toROSMsg(pcl_filter, pcl_point);

                 12.pclPoint_pub (/ORB_SLAM3/Point_Clouds)
                pcl_local_point.header.frame_id = "/pointCloud_local";
                pcl_point.header.frame_id = "/pointCloud";
                pclPoint_local_pub.publish(pcl_local_point);

                // TODO 发布给octomap
                pclPoint_pub.publish(pcl_point);
                std::cout << YELLOW << "show point cloud, size=" << mPointCloud->points.size() << std::endl;
                lastKeyframeSize++;
            }
        }
        {
            if(!mPointCloud->empty())
            {
                // 存储点云
                string save_path = "./VSLAMRGBD.pcd";
                pcl::io::savePCDFile(save_path, *mPointCloud);
                cout << GREEN << "save pcd files to :  " << save_path << endl;
            }

        }
        mbFinish = true;
    }

        自适应场景跑,雷达也是一样,建立好了栅格地图:

orbslam3如何进行导航,如何用ORBSLAM3进行稠密建图用于路径规划,机器人,算法,自动驾驶

        我们调用命令去保存:

rosrun map_server map_saver map:=/projected_map

orbslam3如何进行导航,如何用ORBSLAM3进行稠密建图用于路径规划,机器人,算法,自动驾驶

        在主目录下就可以看到我们的导航地图啦!orbslam3如何进行导航,如何用ORBSLAM3进行稠密建图用于路径规划,机器人,算法,自动驾驶文章来源地址https://www.toymoban.com/news/detail-774494.html

到了这里,关于5.如何利用ORBSLAM3生成可用于机器人/无人机导航的二维/三维栅格地图--以octomap为例的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 2.3ORBSLAM3之相机模型与畸变模型

    主要内容: 对于VSLAM来说关于相机投影模型和畸变模型暂时不需要了解过于深入,通常来说在VSLAM领域相机的投影模型主要分为 针孔模型(Pinhole) 和 全向模型(Omni) 两种,相机的畸变模型分为 切向径向畸(RanTan) 和 等距畸变(Equidistant,EQUI) 两种,也是ORBSLAM3中针对针孔相机和鱼眼

    2024年02月11日
    浏览(65)
  • Ubuntu18.04安装灭霸SLAM:ORBSLAM3

    终于有时间好好整理一下最近跑通ORB-SLAM3的一些笔记了,在xavier上安装了一下谷歌拼音输入法,具体可以参考:AGX Xavier安装中文输入法 先说结论: 1)不建议安装最新版,安装时有许多坑需要填,即使填好了,运行时依然会有很多坑,比如依赖于最新版的opencv4.4等等,最新版

    2023年04月09日
    浏览(64)
  • Windows10使用OrbSlam3-VS2017-VC12版本

    OrbSlam3集成了IMU信息,可用以VIO融合重建。参考这哥们的地址,依据GitHub上的介绍git clone --recursive 之后编译即可 ORBSLAM3 Win10 VS2017 配置简明指南_滥觞LanShang的博客-CSDN博客_orbslam3 windows Git地址:GitHub - chanho-code/ORB-SLAM3forWindows: ORB-SLAM3 for Windows Platform 编译过程: 1.使用sourcetree

    2024年02月09日
    浏览(50)
  • 手把手带你死磕ORBSLAM3源代码(三十)Tracking.cc PreintegrateIMU介绍

    目录 一.前言 二.代码 2.1 完整代码 2.2 预积分技术     Tracking::PreintegrateIMU() 是 Tracking 类中的一个成员函数,用于对从IMU(Inertial Measurement Unit,惯性测量单元)获取的数据进行预积分处理。预积分是视觉-惯性里程计(VIO)中的一个关键技术,它允许将多个IMU测量值整合到一

    2024年02月03日
    浏览(75)
  • 如何在3ds max中创建可用于真人场景的巨型机器人:第 2 部分

    推荐: NSDT场景编辑器助你快速搭建可二次开发的3D应用场景 步骤 1 打开  3ds Max 。选择机器人头部后,二次单击鼠标并选择 隐藏未选中 。机器人的其他部分 除了头部之外,将被隐藏。 打开 3ds Max 步骤 2 在人脸选择模式下,选择外表面,如 下图。 人脸选择模式 步骤 3 选择

    2024年02月14日
    浏览(40)
  • 如何在3ds max中创建可用于真人场景的巨型机器人:第 1部分

    推荐: NSDT场景编辑器助你快速搭建可二次开发的3D应用场景 步骤 1 打开  3ds Max 。 打开 3ds Max 步骤 2 在 左侧 视口中,按键盘上的  Alt-B  键。它 打开 视口配置 窗口。 打开“ 锁定缩放/平移 ”和 “匹配位图 ”选项。单击“ 文件 ”并转到参考 文件位置并加载机器人图像。

    2024年02月15日
    浏览(42)
  • 如何在3ds max中创建可用于真人场景的巨型机器人:第 5 部分

    推荐: NSDT场景编辑器助你快速搭建可二次开发的3D应用场景 步骤 1 打开 “后效 ”。 打开后效果 步骤 2 我有真人版 我在After Effects中导入的素材。这是将 用作与机器人动画合成的背景素材。 实景镜头 步骤 3 有背景 选定的素材图层,转到 动画跟踪摄像机 。 动画跟踪摄像机

    2024年02月15日
    浏览(42)
  • 如何在3ds max中创建可用于真人场景的巨型机器人:第 3 部分

    推荐: NSDT场景编辑器助你快速搭建可二次开发的3D应用场景 步骤 1 打开  3ds Max 。 打开在本教程最后一部分中保存的文件。 打开 3ds Max 步骤 2 转到 创建 系统 并单击 骨骼 。 创建系统 步骤 3 为的 侧视口中的腿,如下图所示。 画骨头 步骤 4 与顶骨 选中后,转到 动画 IK 求解

    2024年02月15日
    浏览(44)
  • 手把手带你死磕ORBSLAM3源代码(三十四)Tracking.cc MonocularInitialization编辑

    目录 一.前言 二.代码 2.1完整代码 2.2 单目视觉跟踪初始化     这段代码是一个名为 MonocularInitialization 的函数,它属于 Tracking 类。从函数名称和代码内容来看,这个函数主要用于单目视觉跟踪的初始化过程。以下是代码的详细解读:     首先,函数检查一个名为 m

    2024年02月02日
    浏览(41)
  • 手把手带你死磕ORBSLAM3源代码(二十九)Tracking.cc GrabImageMonocular介绍

    目录 一.前言 二.代码 2.1 完整代码 2.2 单目相机估计深度结构     Tracking::GrabImageMonocular 是 Tracking 类中的另一个成员函数,用于从单目相机(Monocular Camera)捕获的图像中提取信息,创建一个新的帧ÿ

    2024年02月02日
    浏览(45)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包