elasticsearch 笔记三:查询建议介绍、Suggester、自动完成

这篇具有很好参考价值的文章主要介绍了elasticsearch 笔记三:查询建议介绍、Suggester、自动完成。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

一、查询建议介绍

1. 查询建议是什么?

查询建议,为用户提供良好的使用体验。主要包括: 拼写检查; 自动建议查询词(自动补全)

拼写检查如图:

es suggestion查询预计,elasticsearch,elasticsearch,笔记,jenkins

自动建议查询词(自动补全):

es suggestion查询预计,elasticsearch,elasticsearch,笔记,jenkins

2. ES 中查询建议的 API

查询建议也是使用_search 端点地址。在 DSL 中 suggest 节点来定义需要的建议查询

示例 1:定义单个建议查询词

POST twitter/_search
{
  "query" : {
    "match": {
      "message": "tring out Elasticsearch"
    }
  },
  "suggest" : { <!-- 定义建议查询 -->
    "my-suggestion" : { <!-- 一个建议查询名 -->
      "text" : "tring out Elasticsearch", <!-- 查询文本 -->
      "term" : { <!-- 使用词项建议器 -->
        "field" : "message" <!-- 指定在哪个字段上获取建议词 -->
      }
    }
  }
}

示例 2:定义多个建议查询词

POST _search
{
  "suggest": {
    "my-suggest-1" : {
      "text" : "tring out Elasticsearch",
      "term" : {
        "field" : "message"
      }
    },
    "my-suggest-2" : {
      "text" : "kmichy",
      "term" : {
        "field" : "user"
      }
    }
  }
}

示例 3:多个建议查询可以使用全局的查询文本

POST _search
{
  "suggest": {
    "text" : "tring out Elasticsearch",
    "my-suggest-1" : {
      "term" : {
        "field" : "message"
      }
    },
    "my-suggest-2" : {
       "term" : {
        "field" : "user"
       }
    }
  }
}

二、准备数据

准备一个叫做blogs的索引,配置一个text字段。

PUT /blogs/
{
  "mappings": {
    "properties": {
      "body": {
        "type": "text"
      }
    }
  }
}

通过bulk api写入几条文档

POST _bulk/?refresh=true
{"index":{"_index":"blogs"}}
{"body":"Lucene is cool"}
{"index":{"_index":"blogs"}}
{"body":"Elasticsearch builds on top of lucene"}
{"index":{"_index":"blogs"}}
{"body":"Elasticsearch rocks"}
{"index":{"_index":"blogs"}}
{"body":"Elastic is the company behind ELK stack"}
{"index":{"_index":"blogs"}}
{"body":"elk rocks"}
{"index":{"_index":"blogs"}}
{"body":"elasticsearch is rock solid"}

此时blogs索引里已经有一些文档了,可以进行下一步的探索。为帮助理解,我们先看看哪些term会存在于词典里。
将输入的文本分析一下:

POST _analyze
{
  "text": [
    "Lucene is cool",
    "Elasticsearch builds on top of lucene",
    "Elasticsearch rocks",
    "Elastic is the company behind ELK stack",
    "elk rocks",
    "elasticsearch is rock solid"
  ]
}

这些分出来的token都会成为词典里一个term,注意有些token会出现多次,因此在倒排索引里记录的词频会比较高,同时记录的还有这些token在原文档里的偏移量和相对位置信息。

三、Suggester 介绍

  • Term Suggester: 对给入的文本进行分词,为每个词进行模糊查询提供词项建议,并不会考虑多个term/词组之间的关系。。API调用方只需为每个token挑选options里的词,组合在一起返回给用户前端即可
  • Phrase Suggester,在Term Suggester的基础上,会考量多个term之间的关系,比如是否同时出现在索引的原文里,相邻程度,以及词频等等
  • Completion Suggester,FST数据结构,类似Trie树,不用打开倒排,快速返回,前缀匹配
  • Context Suggester,在Completion Suggester的基础上,用于filter和boost

1. Term suggester

term 词项建议器,对给入的文本进行分词,为每个词进行模糊查询提供词项建议。对于在索引中存在词默认不提供建议词,不存在的词则根据模糊查询结果进行排序后取一定数量的建议词。

常用的建议选项:

text 搜索文本。建议文本是必填选项,需要全局或按建议设置。
field 从中获取候选建议的字段。这是必需选项,需要全局设置或根据建议设置。
analyzer 分析器用来分析建议文本。默认为建议字段的搜索分析器。
size 每个建议文本将返回的最大数。
sort 定义每个建议文本术语应如何分类建议。两个可能的值:score:首先按分数排序,然后记录频次,然后是词条本身。frequency:首先按文档频率排序,然后按相似性得分排序,然后再按术语本身排序。
suggest_mode 提示模式控制要包含的建议,或控制建议的文本术语和建议的控件。可以指定三个可能的值:missing:仅对未在索引中的建议文本术语提供建议。这是默认值。popular:仅建议在比原始建议文本术语更多的文档中出现的建议。always:根据建议文本中的术语建议任何匹配的建议。
lowercase_terms 在文本分析之后,将建议的文本术语小写。
max_edits 最大编辑距离候选建议可以具有以便被认为是建议。只能是 1 到 2 之间的值。任何其他值都将导致引发错误的请求错误。默认为 2。
prefix_length 必须匹配的最小前缀字符数才能成为建议的候选者。默认值为 1。增加此数字可提高拼写检查性能。通常,拼写错误不会出现在学期开始时。(旧名称 “prefix_len” 已弃用)

示例 1:

POST twitter/_search
{
  "suggest" : { <!-- 定义建议查询 -->
    "my-suggestion" : { <!-- 一个建议查询名 -->
      "text" : "lucne rock", <!-- 查询文本 -->
      "term" : { <!-- 使用词项建议器 -->
        "suggest_mode": "missing",
        "field" : "body" <!-- 指定在哪个字段上获取建议词 -->
      }
    }
  }
}

返回结果

{
  "took" : 2,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 0,
      "relation" : "eq"
    },
    "max_score" : null,
    "hits" : [ ]
  },
  "suggest" : {
    "my-suggestion" : [
      {
        "text" : "lucne",
        "offset" : 0,
        "length" : 5,
        "options" : [
          {
            "text" : "lucene",
            "score" : 0.8,
            "freq" : 2
          }
        ]
      },
      {
        "text" : "rock",
        "offset" : 6,
        "length" : 4,
        "options" : [ ]
      }
    ]
  }
}

在返回结果里"suggest" -> “my-suggestion"部分包含了一个数组,每个数组项对应从输入文本分解出来的token(存放在"text"这个key里)以及为该token提供的建议词项(存放在options数组里)。 示例里返回了"lucne”,"rock"这2个词的建议项(options),其中"rock"的options是空的,表示没有可以建议的选项,为什么? 上面提到了,我们为查询提供的suggest mode是"missing",由于"rock"在索引的词典里已经存在了,够精准,就不建议啦。 只有词典里找不到词,才会为其提供相似的选项。

如果将"suggest_mode"换成"popular"会是什么效果?

尝试一下,重新执行查询,返回结果里"rock"这个词的option不再是空的,而是建议为rocks。

  "suggest" : {
    "my-suggestion" : [
      {
        "text" : "lucne",
        "offset" : 0,
        "length" : 5,
        "options" : [
          {
            "text" : "lucene",
            "score" : 0.8,
            "freq" : 2
          }
        ]
      },
      {
        "text" : "rock",
        "offset" : 6,
        "length" : 4,
        "options" : [
          {
            "text" : "rocks",
            "score" : 0.75,
            "freq" : 2
          }
        ]
      }
    ]
  }

回想一下,rock和rocks在索引词典里都是有的。 不难看出即使用户输入的token在索引的词典里已经有了,但是因为存在一个词频更高的相似项,这个相似项可能是更合适的,就被挑选到options里了。 最后还有一个"always" mode,其含义是不管token是否存在于索引词典里都要给出相似项。

Term suggester正如其名,只基于analyze过的单个term去提供建议,并不会考虑多个term之间的关系。API调用方只需为每个token挑选options里的词,组合在一起返回给用户前端即可。 那么有无更直接办法,API直接给出和用户输入文本相似的内容? 答案是有,这就要求助Phrase Suggester了。

2. phrase suggester

phrase 短语建议,在 term 的基础上,会考量多个 term 之间的关系,比如是否同时出现在索引的原文里,相邻程度,以及词频等

看个范例就比较容易明白了:

POST /blogs/_search
{
  "suggest": {
    "my-suggestion": {
      "text": "lucne and elasticsear rock",
      "phrase": {
        "field": "body",
        "highlight": {
          "pre_tag": "<em>",
          "post_tag": "</em>"
        }
      }
    }
  }
}

返回结果:

 "suggest" : {
    "my-suggestion" : [
      {
        "text" : "lucne and elasticsear rock",
        "offset" : 0,
        "length" : 26,
        "options" : [
          {
            "text" : "lucene and elasticsearch rock",
            "highlighted" : "<em>lucene</em> and <em>elasticsearch</em> rock",
            "score" : 0.004993905
          },
          {
            "text" : "lucne and elasticsearch rock",
            "highlighted" : "lucne and <em>elasticsearch</em> rock",
            "score" : 0.0033391973
          },
          {
            "text" : "lucene and elasticsear rock",
            "highlighted" : "<em>lucene</em> and elasticsear rock",
            "score" : 0.0029183894
          }
        ]
      }
    ]
  }

options直接返回一个phrase列表,由于加了highlight选项,被替换的term会被高亮。因为lucene和elasticsearch曾经在同一条原文里出现过,同时替换2个term的可信度更高,所以打分较高,排在第一位返回。Phrase suggester有相当多的参数用于控制匹配的模糊程度,需要根据实际应用情况去挑选和调试。

3. Completion suggester 自动补全

针对自动补全(“Auto Completion”)场景而设计的建议器。此场景下用户每输入一个字符的时候,就需要即时发送一次查询请求到后端查找匹配项,在用户输入速度较高的情况下对后端响应速度要求比较苛刻。因此实现上它和前面两个 Suggester 采用了不同的数据结构,索引并非通过倒排来完成,而是将 analyze 过的数据编码成 FST 和索引一起存放。对于一个 open 状态的索引,FST 会被 ES 整个装载到内存里的,进行前缀查找速度极快。 但是 FST 只能用于前缀查找,这也是 Completion Suggester 的局限所在。

官网链接:

https://www.elastic.co/guide/en/elasticsearch/reference/current/search-suggesters-completion.html

  • completion:es 的一种特有类型,专门为 suggest 提供,基于内存,性能很高。

  • prefix query:基于前缀查询的搜索提示,是最常用的一种搜索推荐查询。

    • prefix:客户端搜索词
    • field:建议词字段
    • size:需要返回的建议词数量(默认 5)
    • skip_duplicates:是否过滤掉重复建议,默认 false
  • fuzzy query

    • fuzziness:允许的偏移量,默认 auto
    • transpositions:如果设置为 true,则换位计为一次更改而不是两次更改,默认为 true。
    • min_length:返回模糊建议之前的最小输入长度,默认 3
    • prefix_length:输入的最小长度(不检查模糊替代项)默认为 1
    • unicode_aware:如果为 true,则所有度量(如模糊编辑距离,换位和长度)均以 Unicode 代码点而不是以字节为单位。这比原始字节略慢,因此默认情况下将其设置为 false。
  • regex query:可以用正则表示前缀,不建议使用

为了使用自动补全,索引中用来提供补全建议的字段需特殊设计,字段类型为 completion。

PUT /blogs_completion/
{
  "mappings": {
    "properties": {
      "body": {
        "type": "completion"
      }
    }
  }
}

用bulk API索引点数据:

POST _bulk/?refresh=true
{"index":{"_index":"blogs_completion"}}
{"body":"Lucene is cool"}
{"index":{"_index":"blogs_completion"}}
{"body":"Elasticsearch builds on top of lucene"}
{"index":{"_index":"blogs_completion"}}
{"body":"Elasticsearch rocks"}
{"index":{"_index":"blogs_completion"}}
{"body":"Elastic is the company behind ELK stack"}
{"index":{"_index":"blogs_completion"}}
{"body":"the elk stack rocks"}
{"index":{"_index":"blogs_completion"}}
{"body":"elasticsearch is rock solid"}

查找:

POST blogs_completion/_search?pretty
{
  "size": 0,
  "suggest": {
    "blog-suggest": {
      "prefix": "elastic i",
      "completion": {
        "field": "body"
      }
    }
  }
}

结果:

  "suggest" : {
    "blog-suggest" : [
      {
        "text" : "elastic i",
        "offset" : 0,
        "length" : 9,
        "options" : [
          {
            "text" : "Elastic is the company behind ELK stack",
            "_index" : "blogs_completion",
            "_type" : "_doc",
            "_id" : "8nI0YYwBPMQ17EXsspBh",
            "_score" : 1.0,
            "_source" : {
              "body" : "Elastic is the company behind ELK stack"
            }
          }
        ]
      }
    ]
  }

值得注意的一点是Completion Suggester在索引原始数据的时候也要经过analyze阶段,取决于选用的analyzer不同,某些词可能会被转换,某些词可能被去除,这些会影响FST编码结果,也会影响查找匹配的效果。

比如我们删除上面的索引,重新设置索引的mapping,将analyzer更改为"english":

DELETE blogs_completion
PUT /blogs_completion/
{
  "mappings": {
    "properties": {
      "body": {
        "type": "completion",
        "analyzer": "english"
      }
    }
  }
}

bulk api索引同样的数据后,执行下面的查询:

POST blogs_completion/_search?pretty
{
  "size": 0,
  "suggest": {
    "blog-suggest": {
      "prefix": "elastic i",
      "completion": {
        "field": "body"
      }
    }
  }
}

居然没有匹配结果了,多么费解! 原来我们用的english analyzer会剥离掉stop word,而is就是其中一个,被剥离掉了!
用analyze api测试一下:

POST _analyze
{
  "analyzer": "english",
  "text": "elasticsearch is rock solid"
}

会发现只有3个token:

{
  "tokens" : [
    {
      "token" : "elasticsearch",
      "start_offset" : 0,
      "end_offset" : 13,
      "type" : "<ALPHANUM>",
      "position" : 0
    },
    {
      "token" : "rock",
      "start_offset" : 17,
      "end_offset" : 21,
      "type" : "<ALPHANUM>",
      "position" : 2
    },
    {
      "token" : "solid",
      "start_offset" : 22,
      "end_offset" : 27,
      "type" : "<ALPHANUM>",
      "position" : 3
    }
  ]
}

FST只编码了这3个token,并且默认的还会记录他们在文档中的位置和分隔符。 用户输入"elastic i"进行查找的时候,输入被分解成"elastic"和"i",FST没有编码这个“i” , 匹配失败。

好吧,如果你现在还足够清醒的话,试一下搜索"elastic is",会发现又有结果,why? 因为这次输入的text经过english analyzer的时候is也被剥离了,只需在FST里查询"elastic"这个前缀,自然就可以匹配到了。

其他能影响completion suggester结果的,还有诸如"preserve_separators","preserve_position_increments"等等mapping参数来控制匹配的模糊程度。以及搜索时可以选用Fuzzy Queries,使得上面例子里的"elastic i"在使用english analyzer的情况下依然可以匹配到结果。

因此用好Completion Sugester并不是一件容易的事,实际应用开发过程中,需要根据数据特性和业务需要,灵活搭配analyzer和mapping参数,反复调试才可能获得理想的补全效果。

回到篇首百度搜索框的补全/纠错功能,如果用ES怎么实现呢?我能想到的一个的实现方式:

  1. 在用户刚开始输入的过程中,使用Completion Suggester进行关键词前缀匹配,刚开始匹配项会比较多,随着用户输入字符增多,匹配项越来越少。如果用户输入比较精准,可能Completion Suggester的结果已经够好,用户已经可以看到理想的备选项了。
  2. 如果Completion Suggester已经到了零匹配,那么可以猜测是否用户有输入错误,这时候可以尝试一下Phrase Suggester。
  3. 如果Phrase Suggester没有找到任何option,开始尝试term Suggester。

精准程度上(Precision)看: Completion > Phrase > term, 而召回率上(Recall)则反之。从性能上看,Completion Suggester是最快的,如果能满足业务需求,只用Completion Suggester做前缀匹配是最理想的。 Phrase和Term由于是做倒排索引的搜索,相比较而言性能应该要低不少,应尽量控制suggester用到的索引的数据量,最理想的状况是经过一定时间预热后,索引可以全量map到内存。

4. context suggester

完成建议者会考虑索引中的所有文档,但是通常来说,我们在进行智能推荐的时候最好通过某些条件过滤,并且有可能会针对某些特性提升权重。

  • contexts:上下文对象,可以定义多个

    • name:context的名字,用于区分同一个索引中不同的context对象。需要在查询的时候指定当前name

    • type:context对象的类型,目前支持两种:category和geo,分别用于对suggest item分类和指定地理位置。

    • boost:权重值,用于提升排名

  • path:如果没有path,相当于在PUT数据的时候需要指定context.name字段,如果在Mapping中指定了path,在PUT数据的时候就不需要了,因为 Mapping是一次性的,而PUT数据是频繁操作,这样就简化了代码。这段解释有木有很牛逼,网上搜到的都是官方文档的翻译,觉悟雷同。

# context suggester
# 定义一个名为 place_type 的类别上下文,其中类别必须与建议一起发送。
# 定义一个名为 location 的地理上下文,类别必须与建议一起发送
DELETE place
PUT place
{
  "mappings": {
    "properties": {
      "suggest": {
        "type": "completion",
        "contexts": [
          {
            "name": "place_type",
            "type": "category"
          },
          {
            "name": "location",
            "type": "geo",
            "precision": 4
          }
        ]
      }
    }
  }
}

PUT place/_doc/1
{
  "suggest": {
    "input": [ "timmy's", "starbucks", "dunkin donuts" ],
    "contexts": {
      "place_type": [ "cafe", "food" ]                    
    }
  }
}
PUT place/_doc/2
{
  "suggest": {
    "input": [ "monkey", "timmy's", "Lamborghini" ],
    "contexts": {
      "place_type": [ "money"]                    
    }
  }
}


GET place/_search
POST place/_search?pretty
{
  "suggest": {
    "place_suggestion": {
      "prefix": "sta",
      "completion": {
        "field": "suggest",
        "size": 10,
        "contexts": {
          "place_type": [ "cafe", "restaurants" ]
        }
      }
    }
  }
}
# 某些类别的建议可以比其他类别提升得更高。以下按类别过滤建议,并额外提升与某些类别相关的建议
GET place/_search
POST place/_search?pretty
{
  "suggest": {
    "place_suggestion": {
      "prefix": "tim",
      "completion": {
        "field": "suggest",
        "contexts": {
          "place_type": [                             
            { "context": "cafe" },
            { "context": "money", "boost": 2 }
          ]
        }
      }
    }
  }
}

# 地理位置筛选器
PUT place/_doc/3
{
  "suggest": {
    "input": "timmy's",
    "contexts": {
      "location": [
        {
          "lat": 43.6624803,
          "lon": -79.3863353
        },
        {
          "lat": 43.6624718,
          "lon": -79.3873227
        }
      ]
    }
  }
}
POST place/_search
{
  "suggest": {
    "place_suggestion": {
      "prefix": "tim",
      "completion": {
        "field": "suggest",
        "contexts": {
          "location": {
            "lat": 43.662,
            "lon": -79.380
          }
        }
      }
    }
  }
}



# 定义一个名为 place_type 的类别上下文,其中类别是从 cat 字段中读取的。
# 定义一个名为 location 的地理上下文,其中的类别是从 loc 字段中读取的
DELETE place_path_category
PUT place_path_category
{
  "mappings": {
    "properties": {
      "suggest": {
        "type": "completion",
        "contexts": [
          {
            "name": "place_type",
            "type": "category",
            "path": "cat"
          },
          {
            "name": "location",
            "type": "geo",
            "precision": 4,
            "path": "loc"
          }
        ]
      },
      "loc": {
        "type": "geo_point"
      }
    }
  }
}
# 如果映射有路径,那么以下索引请求就足以添加类别
# 这些建议将与咖啡馆和食品类别相关联
# 如果上下文映射引用另一个字段并且类别被明确索引,则建议将使用两组类别进行索引
PUT place_path_category/_doc/1
{
  "suggest": ["timmy's", "starbucks", "dunkin donuts"],
  "cat": ["cafe", "food"] 
}
POST place_path_category/_search?pretty
{
  "suggest": {
    "place_suggestion": {
      "prefix": "tim",
      "completion": {
        "field": "suggest",
        "contexts": {
          "place_type": [                             
            { "context": "cafe" }
          ]
        }
      }
    }
  }
}

参考

官网文章来源地址https://www.toymoban.com/news/detail-774571.html

到了这里,关于elasticsearch 笔记三:查询建议介绍、Suggester、自动完成的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Elasticsearch Boolean Query查询介绍

    前言 ES 和 Solr 的底层都是基于Apache Lucene 实现,bool 查询的底层实现是Lucene 的 BooleanQuery,其可以组合多个子句查询,类似 SQL 语句里面的 OR 查询。 查询介绍 在 ES 里面 Boolean 查询封装了 4 种 API 接口能力,可以单独使用,也可以组合使用,总结如下: 函数 描述 must query 关键

    2024年02月13日
    浏览(46)
  • 【Elasticsearch系列】5分钟掌握查询原理-lucece查询逻辑介绍

    🎬作者简介:大家好,我是蓝胖子🥇 ☁️博客首页:CSDN主页蓝胖子的编程梦 🌄每日一句:既然选择了追求,就不要哭泣。坚持一下,扛过今天,幸福就更近一步 大家好,我是蓝胖子,最近在做一些elasticsearch 慢查询优化的事情,通常用分析elasticsearch 慢查询的时候可以通

    2024年02月22日
    浏览(42)
  • 【ElasticSearch】 ElasticSearch serverless架构介绍(查询写入分离,计算存储分离)

    ElasticSearch 推出了全新的serverless架构,将查询(search)和写入(indexing)分离,将计算(computing)和存储(storage)分离,极大提高了 ES 的可运维性,降低了学习成本。本文将先介绍下serverless含义,再介绍ElasticSearch serverless架构。 在serverless架构下,用户只需关注业务逻辑,无需管理服务

    2024年01月24日
    浏览(47)
  • 从根上理解elasticsearch(lucene)查询原理(1)-lucece查询逻辑介绍

    大家好,最近在做一些elasticsearch 慢查询优化的事情,通常用分析elasticsearch 慢查询的时候可以通过profile api 去分析,分析结果显示的底层lucene在搜索过程中使用到的函数调用。所以要想彻底弄懂elasticsearch慢查询的原因,还必须将lucene的查询原理搞懂,今天我们就先来介绍下

    2024年02月04日
    浏览(38)
  • 【ElasticSearch笔记】ES基本查询

    目录 一、简介 ES与关系型数据库对比 文本分析 倒排索引 二、基本查询 空查询 相关性 查询与过滤 1. 查询与\\\"first blog\\\"字段最佳匹配的文档 2. 搜索博客等级(level)大于等于2, 同时发布日期(post_date)是2018-11-11的博客 结构化搜索 1. 精确值查找(term) 2. 多个精确值查找(terms) 3

    2024年01月21日
    浏览(36)
  • Elasticsearch 系列(四)- DSL实现自动补全查询

    本章将和大家分享如何通过 Elasticsearch 实现自动补全查询功能。 1、自动补全需求说明 当用户在搜索框输入字符时,我们应该提示出与该字符有关的搜索项,如图: 2、使用拼音分词 要实现根据字母做补全,就必须对文档按照拼音分词。在 GitHub 上恰好有 Elasticsearch 的 拼音分

    2024年03月17日
    浏览(42)
  • Elasticsearch之聚合查询介绍与使用(附RestAPI代码案例)

    前言:大家好,我是小威,24届毕业生,在一家满意的公司实习。本篇文章将介绍Elasticsearch搜索引擎之聚合查询的介绍与使用,这块内容不作为面试中的重点。 如果文章有什么需要改进的地方还请大佬不吝赐教 👏👏。 小威在此先感谢各位大佬啦~~🤞🤞 🏠个人主页:小威

    2023年04月13日
    浏览(43)
  • 【Elasticsearch】ES精确查询和范围查询,ES时间字段排序实例,ES倒排索引介绍

    termQuery matchQuery 模糊查询 multiMatchQuery 多个字段模糊查询 如果时间字段写入时用的类型是Text,可以用“时间字段.keyword”来处理 #查询前传入分页参数 #分页后拿到总记录数 把文档D对应到的映射转换为到文档ID的映射,每个都对应着一系列的文档,这些文

    2024年02月15日
    浏览(113)
  • 【ElasticSearch】ES自动补全查询与Java接口实现

    自动补全就是当用户在搜索框输入字符时,我们应该提示出与该字符有关的搜索项。 要实现根据字母做补全,就必须对文档按照拼音分词。GitHub上有相关插件,地址:https://github.com/medcl/elasticsearch-analysis-pinyin,下载和ES对应的版本。 安装步骤: 解压 上传到虚拟机中,elasti

    2024年02月15日
    浏览(43)
  • elasticsearch[四]-数据聚合排序查询、搜索框自动补全、数据同步、集群

    **聚合(aggregations)**可以让我们极其方便的实现对数据的统计、分析、运算。例如: 什么品牌的手机最受欢迎? 这些手机的平均价格、最高价格、最低价格? 这些手机每月的销售情况如何? 实现这些统计功能的比数据库的 sql 要方便的多,而且查询速度非常快,可以实现近

    2024年01月19日
    浏览(57)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包