PCA主成成分分析例题详解

这篇具有很好参考价值的文章主要介绍了PCA主成成分分析例题详解。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

主成分分析是一种降维算法,它能将多个指标转换为少数几个主成分,这些主成分是原始变量的线性组合,且彼此之间互不相关,其能反映出原始数据的大部分信息

需要了解具体细节可看此视频👉:什么是主成成分分析PCA

计算步骤

假设有 n n n 个样本, p p p 个特征,则可构成大小为 n × p n×p n×p 的样本矩阵 x x x
x = [ x 11 x 12 … x 1 p x 21 x 22 … x 2 p ⋮ ⋮ ⋱ ⋮ x n 1 x n 2 … x n p ] = ( x 1 , x 2 ,   …   , x p ) x= \begin{bmatrix} x_{11} & x_{12} & \dots & x_{1p}\\ x_{21} & x_{22} & \dots & x_{2p}\\ \vdots & \vdots & \ddots & \vdots\\ x_{n1} & x_{n2} & \dots & x_{np} \end{bmatrix} =(x_1 , x_2,\ \dots\ , x_p) x= x11x21xn1x12x22xn2x1px2pxnp =(x1,x2,  ,xp)

  1. 以列为单位,计算各列的均值 x j ‾ \overline{x_j} xj 和标准差 S j S_j Sj ,其中 1 ≤ j ≤ p 1\le j\le p 1jp
    x j ‾ = 1 n ∑ i = 1 n x i j S j = ∑ i = 1 n ( x i j − x j ‾ ) 2 n − 1 \overline{x_j}=\dfrac1n\sum_{i=1}^{n}x_{ij}\\ S_j=\sqrt{\dfrac{\sum_{i=1}^{n}(x_{ij}-\overline{x_j})^2}{n-1}} xj=n1i=1nxijSj=n1i=1n(xijxj)2

  2. 标准化原样本矩阵 x x x,标准化样本矩阵为 X X X,标准化后 X i ‾ = 0 \overline{X_i}=0 Xi=0
    X i j = x i j − x j ‾ S j [ X 11 X 12 … X 1 p X 21 X 22 … X 2 p ⋮ ⋮ ⋱ ⋮ X n 1 X n 2 … X n p ] X_{ij}=\dfrac{x_{ij}-\overline{x_j}}{S_j}\\ \begin{bmatrix} X_{11} & X_{12} & \dots & X_{1p}\\ X_{21} & X_{22} & \dots & X_{2p}\\ \vdots & \vdots & \ddots & \vdots\\ X_{n1} & X_{n2} & \dots & X_{np} \end{bmatrix} Xij=Sjxijxj X11X21Xn1X12X22Xn2X1pX2pXnp

  3. 计算标准化样本的协方差矩阵 R R R 【方阵】

    协方差矩阵求法在线性判别分析LDA中有细致讲解,此处不再赘述
    R = [ r 11 r 12 … r 1 p r 21 r 22 … r 2 p ⋮ ⋮ ⋱ ⋮ r p 1 X p 2 … r p p ] r i j = 1 n − 1 ∑ k = 1 n ( X k i − X i ‾ ) ( X k j − X j ‾ ) = 1 n − 1 ∑ k = 1 n X k i X k j R=\begin{bmatrix} r_{11} & r_{12} & \dots & r_{1p}\\ r_{21} & r_{22} & \dots & r_{2p}\\ \vdots & \vdots & \ddots & \vdots\\ r_{p1} & X_{p2} & \dots & r_{pp} \end{bmatrix}\\ r_{ij}=\dfrac{1}{n-1}\sum_{k=1}^{n}(X_{ki}-\overline{X_i})(X_{kj}-\overline{X_j}) =\dfrac{1}{n-1}\sum_{k=1}^{n}X_{ki}X_{kj} R= r11r21rp1r12r22Xp2r1pr2prpp rij=n11k=1n(XkiXi)(XkjXj)=n11k=1nXkiXkj

  4. 计算 R R R 的特征值和特征矩阵【参考考研数学线性代数部分】

    R R R 是半正定矩阵,特征值 λ \lambda λ 有如下👇性质
    λ 1 ≥ λ 2 ≥ ⋯ ≥ 0 t r ( R ) = ∑ k = 1 p λ k = p \lambda_1\ge\lambda_2\ge\dots\ge0\\ tr(R)=\sum_{k=1}^{p}\lambda_k=p λ1λ20tr(R)=k=1pλk=p

  5. 计算主成分贡献率 r a t e _ o f _ c o n t r i b u t i o n rate\_of\_contribution rate_of_contribution 以及累计贡献率 a g g r e g a t e _ r a t e _ o f _ c o n t r i b u t i o n aggregate\_rate\_of\_contribution aggregate_rate_of_contribution
    r a t e _ o f _ c o n t r i b u t i o n = λ i ∑ k = 1 p λ k ( i = 1 , 2 ,   …   , p ) a g g r e g a t e _ r a t e _ o f _ c o n t r i b u t i o n = ∑ k = 1 i λ k ∑ k = 1 p λ k ( i = 1 , 2 ,   …   , p ) rate\_of\_contribution=\dfrac{\lambda_i}{\sum_{k=1}^{p}\lambda_k}(i=1,2,\ \dots\ ,p)\\ aggregate\_rate\_of\_contribution=\dfrac{\sum_{k=1}^{i}\lambda_k}{\sum_{k=1}^{p}\lambda_k}(i=1,2,\ \dots\ ,p) rate_of_contribution=k=1pλkλi(i=1,2,  ,p)aggregate_rate_of_contribution=k=1pλkk=1iλk(i=1,2,  ,p)

  6. 写出主成分,第 i i i 个主成分记作 y i y_i yi

    一般取累计贡献率超过 80 % 80\% 80% 的特征值所对应的第一、第二、 … \dots 、第 m ( m ≤ p ) m(m\le p) m(mp) 个主成分
    y i = a 1 i X 1 + a 2 i X 2 + ⋯ + a p i X p       ( i = 1 , 2 ,   …   , m ) y_i=a_{1i}X_1+a_{2i}X_2+\dots+a_{pi}X_p \ \ \ \ \ (i=1,2,\ \dots\ ,m) yi=a1iX1+a2iX2++apiXp     (i=1,2,  ,m)
    其中 a a a 是特征向量【竖直】, a 1 i a_{1i} a1i 代表第 i i i 个特征向量的第 1 1 1 个元素

  7. 根据系数分析主成分代表的意义

    对于某个主成分而言,指标前面的系数越大,代表该指标对于该主成分的影响越大

例题

假设有 n n n 个学生参加四门课程的考试,将学生们的考试成绩看作随机变量的取值,对考试成绩数据进行标准化处理,得到样本相关矩阵 R R R ,如下表所示👇:

试对数据进行主成分分析

此处的矩阵已经是协方差矩阵,因此直接计算特征值和特征向量即可

import numpy as np
R = np.array([[1,0.44,0.29,0.33],[0.44,1,0.35,0.32],[0.29,0.35,1,0.6],[0.33,0.32,0.6,1]])
eigenvalue, featurevector = np.linalg.eig(a)
print('特征值:')
print(eigenvalue)
print('特征向量:')
# numpy计算的特征向量最后需要变号
print(featurevector*(-1))

特征值和特征向量值可能会有误差,这是因为计算时位数的不同,总体差不多即可,此处做近似处理使得结果与例题一致
∴ λ 1 = 2.17 ,   λ 2 = 0.87 ,   λ 3 = 0.57.   λ 4 = 0.39 \therefore \lambda_1=2.17,\ \lambda_2=0.87,\ \lambda_3=0.57.\ \lambda_4=0.39 λ1=2.17, λ2=0.87, λ3=0.57. λ4=0.39
这些特征值就是各主成分的方差贡献值。假设要求主成分的累计方差贡献率大于 75 % 75\% 75% 那么只需取前两个主成分即可,即 k = 2 k=2 k=2 ,因为👇
a g g r e g a t e _ r a t e _ o f _ c o n t r i b u t i o n = ∑ k = 1 2 λ k ∑ k = 1 4 λ k = 2.17 + 0.87 2.17 + 0.87 + 0.57 + 0.39 = 0.76 aggregate\_rate\_of\_contribution=\dfrac{\sum_{k=1}^{2}\lambda_k}{\sum_{k=1}^{4}\lambda_k}=\dfrac{2.17+0.87}{2.17+0.87+0.57+0.39}=0.76 aggregate_rate_of_contribution=k=14λkk=12λk=2.17+0.87+0.57+0.392.17+0.87=0.76

近似处理单位特征向量和主成分的方差贡献率

项目 x 1 x_1 x1 x 2 x_2 x2 x 3 x_3 x3 x 4 x_4 x4 方差贡献率【 r a t e _ o f _ c o n t r i b u t i o n rate\_of\_contribution rate_of_contribution
y 1 y_1 y1 0.460 0.476 0.523 0.537 0.543
y 2 y_2 y2 0.574 0.486 -0.476 -0.456 0.218

第一,第二主成分为:
y 1 = 0.460 x 1 + 0.476 x 2 + 0.523 x 3 + 0.537 x 4 y 1 = 0.574 x 1 + 0.486 x 2 − 0.476 x 3 − 0.456 x 4 y_1=0.460x_1+0.476x_2+0.523x_3+0.537x_4\\ y_1=0.574x_1+0.486x_2-0.476x_3-0.456x_4 y1=0.460x1+0.476x2+0.523x3+0.537x4y1=0.574x1+0.486x20.476x30.456x4
i i i 主成分对应变量 x j x_j xj 的因子负荷量 f i j f_{ij} fij = a i j × λ i σ i j \dfrac{a_{ij} \times\sqrt{\lambda_i}}{\sqrt{\sigma_{ij}}} σij aij×λi ,其中 a i j a_{ij} aij 是第 i i i 个特征向量的第 j j j 个元素, σ i j \sigma_{ij} σij 是协方差 r i j r_{ij} rij
f 11 = 0.460 × 2.17 1 = 0.678 f_{11}= \dfrac{0.460 \times \sqrt{2.17}}{\sqrt{1}}=0.678 f11=1 0.460×2.17 =0.678

同理可得其余的因子负荷量

第 i 主成分对应变量xj的因子负荷量

项目 x 1 x_1 x1 x 2 x_2 x2 x 3 x_3 x3 x 4 x_4 x4
y 1 y_1 y1 0.678 0.701 0.770 0.791
y 2 y_2 y2 0.536 0.453 -0.444 -0.425

x , y x,y x,y 主成分对变量 x i x_i xi 的贡献率 p x y , i = f x i 2 + f y i 2 p_{xy,i}= f_{xi}^2+ {f_{yi}^2} pxy,i=fxi2+fyi2 ,其中 f i j f_{ij} fij 为第 i i i 主成分对应第 j j j 个因子负荷量
p 12 , 1 = 0.67 8 2 + 0.53 6 2 = 0.747 p_{12,1}=0.678^2+0.536^2=0.747 p12,1=0.6782+0.5362=0.747
同理可得其余的贡献率

第 1,2 主成分对变量 xi 的贡献率

x 1 x_1 x1 x 2 x_2 x2 x 3 x_3 x3 x 4 x_4 x4
0.747 0.697 0.790 0.806

可以看出,第一主成分 y 1 y_1 y1 对应的因子负荷量均为正数,表明各门课程成绩提高都可使 y 1 y_1 y1 提高,也就是说,第一主成分 y 1 y_1 y1 反映了学生的整体成绩;还可以看出,因子负荷量的数值相近,且 y 1 ( x 4 ) y_1(x_4) y1(x4) 的数值最大,这表明物理成绩在整体成绩中占最重要位置。

第二主成分 y 2 y_2 y2 对应的因子负荷量有正有负,正的是语文和外语,负的是数学和物理,表明文科成绩提高都可使 y 2 y_2 y2 提高,而理科成绩提高都可使 y 2 y_2 y2 降低,也就是说,第二主成分 y 2 y_2 y2 反映了学生的文科成绩与理科成绩的关系。文章来源地址https://www.toymoban.com/news/detail-774660.html

到了这里,关于PCA主成成分分析例题详解的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 主成分分析(PCA)详解

    主成分分析(PCA)是一种比较基础的数据降维方法,也是多元统计中的重要部分,在数据分析、机器学习等方面具有广泛应用。主成分分析目的是用较少的变量来代替原来较多的变量,并可以反映原来多个变量的大部分信息。 对于一个含有n个数据,变量的个数为p的一个样本,

    2024年01月17日
    浏览(33)
  • 主成分分析(PCA)原理详解

    在许多领域的研究与应用中,通常需要对含有多个变量的数据进行观测,收集大量数据后进行分析寻找规律。多变量大数据集无疑会为研究和应用提供丰富的信息,但是也在一定程度上增加了数据采集的工作量。更重要的是在很多情形下,许多变量之间可能存在相关性,从而

    2024年02月07日
    浏览(37)
  • PCA(主成分分析)的理解与应用(学习笔记)

    PCA         主成分分析(Principal Component Analysis, PCA)是一种线性降维算法,也是一种常用的数据预处理(Pre-Processing)方法。它的目标是是用方差(Variance)来衡量数据的差异性,并将差异性较大的高维数据投影到低维空间中进行表示。绝大多数情况下,我们希望获得两个

    2024年02月05日
    浏览(41)
  • PCA主成分分析

    目前图像特征的提取主要有两种方法:传统图像特征提取方法 和 深度学习方法。 传统的特征提取方法:基于图像本身的特征进行提取(PCA); 深度学习方法:基于样本自动训练出区分图像的特征分类器; 特征选择(feature selection)和特征提取(Feature extraction)都属于 降维

    2024年02月08日
    浏览(44)
  • PCA分析(主成分分析)--结果解读

    主成分分析( PCA )是一个很好的工具,可以用来降低特征空间的维数。 PCA 的显著优点是它能产生不相关的特征,并能提高模型的性能。 PCA 用于减少用于训练模型的特征维度数量,它通过从多个特征构造所谓的主成分( PC )来实现这一点。 PC 的构造方式使得 PC1 方向在最大

    2024年02月03日
    浏览(31)
  • 主成分分析(PCA)实例讲解

        主成分分析(PCA)是一种降维算法,PCA的主要思想是将n维特征映射到k维上,这k维是全新的正交特征也被称为主成分(特征之间互相独立),是在原有n维特征的基础上重新构造出来的k维特征(k=n),会带来部分信息损失。     一般来说,当研究的问题涉及到多

    2024年02月09日
    浏览(32)
  • 主成分分析(PCA)步骤及代码

      主成分分析(Principal Component Analysis,PCA), 简称PCA,是一种统计方法。过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量,转换后的这组变量叫主成分。主成分分析是我们在数学建模的过程中最为常见的线性降维方式,在比赛中常常会用在数据指标过多

    2023年04月08日
    浏览(31)
  • 主成分分析(PCA)——矩阵角度推导

    最近机器学习课上正式讲了主成分分析,只是老师说的很快,我并没有完全理解。随后我搜了很多关于这方面的讲解来进行理解,仅CSDN上就有很多讲的很好的文章,从协方差矩阵角度进行说明,基本上我也都理解了。但另一方面我发现可以结合我最近学的矩阵分析,从纯矩阵

    2024年03月15日
    浏览(30)
  • 主成分分析(PCA)-Python代码

    主成分分析是利用降维的思想,在损失很少信息的前提下把多个指标转化为几个综合指标的多元统计方法。 算法的具体步骤如下: 1)对向量X进行去中心化。 2)计算向量X的协方差矩阵,自由度可以选择0或者1。 3)计算协方差矩阵的特征值和特征向量。 4)选取最大的k个特

    2024年02月14日
    浏览(29)
  • 【主成分分析(PCA)- 鸢尾花】

    在现代数据科学中,维度灾难常常是数据处理与分析的一大难题。主成分分析(PCA)是一种广泛使用的数据降维技术,它通过将原始数据转换为新的低维空间,保留最重要的信息,从而使得数据分析更加高效。本博客将详细介绍PCA的原理、应用场景以及如何使用Python中的skl

    2024年02月15日
    浏览(65)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包