[Redis实战]分布式锁

这篇具有很好参考价值的文章主要介绍了[Redis实战]分布式锁。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

四、分布式锁

4.1 基本原理和实现方式对比

分布式锁:满足分布式系统或集群模式下多进程可见并且互斥的锁。

分布式锁的核心思想就是让大家都使用同一把锁,只要大家使用的是同一把锁,那么我们就能锁住线程,不让线程进行,让程序串行执行,这就是分布式锁的核心思路。

[Redis实战]分布式锁,Redis,redis,分布式,数据库

分布式锁满足的条件

可见性:多个线程都能看到相同的结果。注意:这个地方说的可见性并不是并发编程中指的内存可见性,只是说多个进程之间都能感知到变化的意思。

互斥:互斥是分布式锁最基本的条件,使得程序串行执行。

高可用:程序不易崩溃,时时刻刻都保证较高的可用性。

高性能:由于加锁本身就让性能降低,所以对于分布式锁本身需要它有较高的加锁性能和释放锁性能。

安全性:安全是程序中必不可少的一环。

[Redis实战]分布式锁,Redis,redis,分布式,数据库

常见的三种分布式锁

  • MySQL:mysql本身就带有锁机制,但是由于mysql性能本身一般,所以采用分布式锁的情况下,其实使用mysql作为分布式锁比较少见。
  • Redis:redis作为分布式锁是非常常见的一种使用方式,现在企业级开发中基本都使用redis或zookeeper作为分布式锁,利用setnx这个方法,如果插入key成功,则表示获得了锁,如果有人插入成功,其他人插入失败则表示无法获得到锁,利用这套逻辑来实现分布式锁。
  • zookeeper:zookeeper也是企业级开发中较好的一个实现分布式锁的方案。

[Redis实战]分布式锁,Redis,redis,分布式,数据库

4.2 Redis分布式锁的实现核心思路

实现分布式锁时需要实现的两个基本方法:

  • 获取锁:

    • 互斥:确保只能有一个线程获取锁
    • 非阻塞:尝试一次,成功返回true,失败返回false

    [Redis实战]分布式锁,Redis,redis,分布式,数据库

  • 释放锁:

    • 手动释放

    • 超时释放:获取锁时添加一个超时时间

      [Redis实战]分布式锁,Redis,redis,分布式,数据库

核心思路:

我们利用redis的setNx方法,当有多个线程进入时,我们就利用该方法,第一个线程进入时,redis中就有这个key了,返回了1,如果结果是1表示他抢到了锁,那么他去执行业务,然后再删除锁,退出锁逻辑,如果没有抢到锁,等待一定时间后重试即可

[Redis实战]分布式锁,Redis,redis,分布式,数据库

4.3 实现分布式锁版本一

锁的基本接口

public interface ILock {

    /**
     * 尝试获取锁
     *
     * @param timeoutSec 锁持有的超时时间,过期后自动释放
     * @return true代表获取锁成功;false代表获取锁失败
     */
    boolean tryLock(long timeoutSec);

    /**
     * 释放锁
     */
    void unlock();
}

SimpleRedisLock

利用setnx方法进行加锁,同时增加过期时间,防止死锁,此方法可以保证加锁和增加过期时间,具有原子性

public class SimpleRedisLock implements ILock {
    private String name;
    private StringRedisTemplate stringRedisTemplate;

    public SimpleRedisLock(String name, StringRedisTemplate stringRedisTemplate) {
        this.name = name;
        this.stringRedisTemplate = stringRedisTemplate;
    }

    private static final String KEY_PREFIX = "lock:";

    @Override
    public boolean tryLock(long timeoutSec) {
        //获取线程标识
        long threadId = Thread.currentThread().getId();
        //获取锁
        Boolean success = stringRedisTemplate.opsForValue().setIfAbsent(KEY_PREFIX + name, threadId + "", timeoutSec, TimeUnit.SECONDS);
        return Boolean.TRUE.equals(success);
    }

    @Override
    public void unlock() {
        //释放锁
        stringRedisTemplate.delete(KEY_PREFIX+name);
    }
}

修改seckillVoucher业务代码

@Autowired
private StringRedisTemplate stringRedisTemplate;

public Result seckillVoucher(Long voucherId) {
    //1.查询优惠券信息
    SeckillVoucher voucher = seckillVoucherService.getById(voucherId);
    //2.判断秒杀是否开始
    if (voucher.getBeginTime().isAfter(LocalDateTime.now())) {
        return Result.fail("秒杀尚未开始!");
    }
    //3.判断秒杀是否已经结束
    if (voucher.getEndTime().isBefore(LocalDateTime.now())) {
        return Result.fail("秒杀已经结束!");
    }
    //4.判断库存是否充足
    if (voucher.getStock() < 1) {
        return Result.fail("库存不足!");
    }
    Long userId = UserHolder.getUser().getId();
    //创建锁对象
    SimpleRedisLock lock = new SimpleRedisLock("order:" + userId, stringRedisTemplate);
    //获取锁
    boolean isLock = lock.tryLock(1200);
    //判断释放获取锁成功
    if (!isLock) {
        //获取锁失败,返回错误或重试
        return Result.fail("不允许重复下单!");
    }
    try {
        //获取代理对象(事务)
        IVoucherOrderService proxy = (IVoucherOrderService) AopContext.currentProxy();
        return proxy.createVoucherOrder(voucherId);
    } finally {
        //释放锁
        lock.unlock();
    }
}

4.4 Redis分布式锁误删情况说明

逻辑说明:

持有锁的线程在锁的内部出现了阻塞,导致它的锁超时自动释放,线程2来尝试获得锁,拿到了这把锁,然后线程2在持有锁执行过程中,线程1继续执行,而线程1执行过程中,走到了删除锁逻辑,此时就会把本应该属于线程2的锁进行删除。

[Redis实战]分布式锁,Redis,redis,分布式,数据库

解决方案:在每个线程释放锁的时候,去判断一下当前这把锁是否属于自己。假设还是上面的情况,线程1卡顿,锁超时自动释放,线程2进入到锁的内部执行逻辑,此时线程1反映过来,然后删除锁,但是线程1一看当前这把锁不是属于自己,于是不进行删除锁逻辑,当线程2走到删除锁逻辑时,如果没有卡过自动释放锁的时间点,则判断当前这把锁是属于自己的,于是删除这把锁。

[Redis实战]分布式锁,Redis,redis,分布式,数据库

4.5 解决Redis分布式锁误删问题

需求:修改之前的分布式锁实现,满足:在获取锁时存入线程标识(可以用UUID表示),在释放锁时先获得锁的线程标示,判断是否与当前线程标识一致。

  • 如果一致则释放锁
  • 如果不一致则不释放锁

核心逻辑:在存入锁时,放入自己线程的标识,在删除锁时,判断当前这把锁的标识是不是自己存入的,如果是,则进行删除,如果不是,则不进行删除。

[Redis实战]分布式锁,Redis,redis,分布式,数据库

private static final String ID_PREFIX = UUID.randomUUID().toString(true) + "-";

@Override
public boolean tryLock(long timeoutSec) {
    //获取线程标识
    String threadId = ID_PREFIX + Thread.currentThread().getId();
    //获取锁
    Boolean success = stringRedisTemplate.opsForValue().setIfAbsent(KEY_PREFIX + name, threadId, timeoutSec, TimeUnit.SECONDS);
    return Boolean.TRUE.equals(success);
}

@Override
public void unlock() {
    //获取线程标识
    String threadId = ID_PREFIX + Thread.currentThread().getId();
    //获取锁中的标识
    String id = stringRedisTemplate.opsForValue().get(KEY_PREFIX + name);
    //判断标识是否一致
    if (threadId.equals(id)) {
        //释放锁
        stringRedisTemplate.delete(KEY_PREFIX + name);
    }
}

有关代码实操说明:

在我们修改完此处代码后,我们重启工程,然后启动两个线程,第一个线程持有锁后,手动释放锁,第二个线程 此时进入到锁内部,再放行第一个线程,此时第一个线程由于锁的value值并非是自己,所以不能释放锁,也就无法删除别人的锁,此时第二个线程能够正确释放锁,通过这个案例初步说明我们解决了锁误删的问题。

4.6 分布式锁的原子性问题

更为极端的误删逻辑说明:

线程1现在持有锁之后,在执行业务逻辑过程中,它正准备删除锁,而且已经走到了条件判断的过程中,比如它已经拿到了当前这把锁确实是属于他自己的,正准备删除锁,但是此时它的锁到期了,那么此时线程2进来,但是线程1他会接着往后执行,当线程1执行到删除锁那行代码时,相当于条件判断并没有起到作用,这就是删锁时的原子性问题,之所以有这个问题,是因为线程1的拿到锁,比较锁,删除锁实际上不是一个原子性的,我们要防止刚才的情况发生。

[Redis实战]分布式锁,Redis,redis,分布式,数据库

4.7 Lua脚本解决多条命令原子性问题

Redis提供了Lua脚本功能,在一个脚本中编写多条Redis命令,确保多条命令执行时的原子性。

Lua是一种编程语言,它的基本语法大家可以参考网站:https://www.runoob.com/lua/lua-tutorial.html,这里重点介绍Redis提供的调用函数,我们可以使用Lua去操作redis,又能保证它的原子性,这样就可以实现拿锁、比较锁和删除锁是一个原子性动作了。

这里重点介绍Redis提供的调用函数,语法如下:

redis.call('命令名称','key','其他参数',...)

例如,我们要执行set name jack,则脚本是这样的:

# 执行 set name jack
redis.call('set','name','jack')

例如,我们要先执行set name Rose,再执行get name,则脚本如下:

# 先执行 set name jack
redis.call('set','name','Rose')
# 再执行 get name
local name=redis.call('get','name')
# 返回
return name

写好脚本以后,需要用Redis命令来调用脚本,调用脚本的常见命令如下:

例如,我们要执行 redis.call(‘set’, ‘name’, ‘jack’) 这个脚本,语法如下:

#调用脚本
EVAL "return redis.call('set','name','jack')" 0

如果脚本中的key、value不想写死,可以作为参数传递。key类型参数会放入KEYS数组,其它参数会放入ARGV数组,在脚本中可以从KEYS和ARGV数组获取这些参数:

#调用脚本
EVAL "return redis.call('set',KEYS[1],ARGV[1])" 1 name Rose

使用Lua脚本实现释放锁的流程

--这里的KEYS[1]就是锁的key,这里的ARGV[1]就是当前线程标识
--获取锁中的标识,判断是否与当前线程标识一致
if(redis.call('GET',KEYS[1])==ARGV[1]) then
    -- 一致,则删除锁
    return redis.call('DEL',KEYS[1])
end
--不一致,则直接返回
return 0

4.8 利用Java代码调用Lua脚本改造分布式锁

在RedisTemplate中,可以利用execute方法去执行lua脚本,参数对应关系如图所示

[Redis实战]分布式锁,Redis,redis,分布式,数据库

private static final DefaultRedisScript<Long> UNLOCK_SCRIPT;
    static {
        UNLOCK_SCRIPT = new DefaultRedisScript<>();
        UNLOCK_SCRIPT.setLocation(new ClassPathResource("unlock.lua"));
        UNLOCK_SCRIPT.setResultType(Long.class);
    }

public void unlock() {
    // 调用lua脚本
    stringRedisTemplate.execute(
            UNLOCK_SCRIPT,
            Collections.singletonList(KEY_PREFIX + name),
            ID_PREFIX + Thread.currentThread().getId());
}

经过以上改造,我们就可以实现拿锁、比较锁、删除锁的原子性操作了。

测试逻辑

第一个线程进来,得到了锁,手动删除锁,模拟锁超时了,其他线程会来抢锁,当第一个线程利用lua删除锁时,lua能保证他不能删除别人的锁,第二个线程删除锁时,利用lua同样可以保证不会删除别人的锁,同时还能保证原子性。

4.9 总结

基于Redis的分布式锁实现思路:

  • 利用set nx ex 获取锁,并设置过期时间,保存线程标识
  • 释放锁时先判断标识是否与自己一致,一致则删除锁
    • 特性:
      • 利用set nx满足互斥性
      • 利用set ex保证故障时锁依然能释放,避免死锁,提高安全性
      • 利用Redis集群保证高可用和高并发特性

一路走来,利用添加过期时间,防止死锁问题的发生,但是有了过期时间之后,可能出现误删别人锁的问题,这个问题开始是利用删之前拿锁、比较锁、删除锁这个逻辑来解决的,也就是删之前判断这把锁是否是属于自己的,但是现在还有一个原子性问题,我们无法保证拿锁、比较锁和删除锁是一个原子性动作,最后通过lua表达式解决了这个问题。文章来源地址https://www.toymoban.com/news/detail-774781.html

到了这里,关于[Redis实战]分布式锁的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • redis实战-redis实现分布式锁&redisson快速入门

    前言 集群环境下的并发问题  分布式锁 定义 需要满足的条件 常见的分布式锁 redis实现分布式锁 核心思路 代码实现 误删情况 逻辑说明 解决方案 代码实现 更为极端的误删情况 Lua脚本解决原子性问题 分布式锁-redission redisson的概念 快速入门 总结 在前面我们已经实现了单机

    2024年02月09日
    浏览(47)
  • Redis实战——Redisson分布式锁

    目录 1 基于Redis中setnx方法的分布式锁的问题 2 Redisson         2.1 什么是Redisson         2.2 Redisson实现分布式锁快速入门         2.3 Redisson 可重入锁原理                 什么是可重入锁?                 Redisson中又是如何实现的呢?         2

    2024年02月15日
    浏览(47)
  • Redis学习(三)分布式缓存、多级缓存、Redis实战经验、Redis底层原理

    单节点Redis存在着: 数据丢失问题:单节点宕机,数据就丢失了。 并发能力和存储能力问题:单节点能够满足的并发量、能够存储的数据量有限。 故障恢复问题:如果Redis宕机,服务不可用,需要一种自动的故障恢复手段。 RDB持久化 RDB(Redis database backup file,Redis数据库备份

    2024年02月16日
    浏览(40)
  • 4、Redis高并发分布式锁实战

    在分布式系统中,保证数据的一致性和避免竞争条件是至关重要的。分布式锁是一种常用的机制,而Redis作为一款高性能的内存数据库,提供了简单而强大的分布式锁方案。本文将深入探讨如何利用Redis高并发分布式锁来解决分布式系统中的并发控制问题,并提供实战案例。

    2024年01月18日
    浏览(54)
  • Redis7实战加面试题-高阶篇(手写Redis分布式锁)

    面试题: 1.Redis除了拿来做缓存,你还见过基于Redis的什么用法? 数据共享,分布式session分布式锁 全局ID 计算器、点赞位统计 购物车 轻量级消息队列(list,stream) 抽奖 点赞、签到、打卡 差集交集并集,用户关注、可能认识的人,推荐模型 热点新闻、热搜排行榜 2.Redis做分

    2024年02月07日
    浏览(34)
  • Redis学习(三)持久化机制、分布式缓存、多级缓存、Redis实战经验

    单节点Redis存在着: 数据丢失问题:单节点宕机,数据就丢失了。 并发能力和存储能力问题:单节点能够满足的并发量、能够存储的数据量有限。 故障恢复问题:如果Redis宕机,服务不可用,需要一种自动的故障恢复手段。 RDB持久化 RDB(Redis database backup file,Redis数据库备份

    2024年02月16日
    浏览(49)
  • (四)库存超卖案例实战——优化redis分布式锁

    在上一节内容中,我们已经实现了使用redis分布式锁解决商品“超卖”的问题,本节内容是对redis分布式锁的优化。在上一节的redis分布式锁中,我们的锁有俩个可以优化的问题。第一,锁需要实现可重入,同一个线程不用重复去获取锁;第二,锁没有续期功能,导致业务没有

    2024年02月07日
    浏览(42)
  • 中间件系列 - Redis入门到实战(高级篇-分布式缓存)

    学习视频: 黑马程序员Redis入门到实战教程,深度透析redis底层原理+redis分布式锁+企业解决方案+黑马点评实战项目 中间件系列 - Redis入门到实战 本内容仅用于个人学习笔记,如有侵扰,联系删除 学习目标 Redis持久化 Redis主从 Redis哨兵 Redis分片集群 - 基于Redis集群解决单机R

    2024年02月03日
    浏览(48)
  • Redis实战案例14-分布式锁的基本原理、不同实现方法对比以及基于Redis进行实现思路

    基于数据库的分布式锁:这种方式使用数据库的特性来实现分布式锁。具体流程如下: 获取锁:当一个节点需要获得锁时,它尝试在数据库中插入一个特定的唯一键值(如唯一约束的主键),如果插入成功,则表示获得了锁。 释放锁:当节点完成任务后,通过删除该唯一键

    2024年02月13日
    浏览(49)
  • Redis缓存设计与性能优化【缓存和数据库不一致问题,解决方案:1.加过期时间这样可以一段时间后自动刷新 2.分布式的读写锁】

    在大并发下,同时操作数据库与缓存会存在数据不一致性问题 1、双写不一致情况 2、读写并发不一致 解决方案: 1、对于并发几率很小的数据(如个人维度的订单数据、用户数据等),这种几乎不用考虑这个问题,很少会发生缓存不一致, 可以给缓存数据加上过期时间,每隔一

    2024年04月13日
    浏览(50)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包