【Hadoop】一个例子带你了解MapReduce

这篇具有很好参考价值的文章主要介绍了【Hadoop】一个例子带你了解MapReduce。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

写在前面:博主是一只经过实战开发历练后投身培训事业的“小山猪”,昵称取自动画片《狮子王》中的“彭彭”,总是以乐观、积极的心态对待周边的事物。本人的技术路线从Java全栈工程师一路奔向大数据开发、数据挖掘领域,如今终有小成,愿将昔日所获与大家交流一二,希望对学习路上的你有所助益。同时,博主也想通过此次尝试打造一个完善的技术图书馆,任何与文章技术点有关的异常、错误、注意事项均会在末尾列出,欢迎大家通过各种方式提供素材。

  • 对于文章中出现的任何错误请大家批评指出,一定及时修改。
  • 有任何想要讨论和学习的问题可联系我:zhuyc@vip.163.com。
  • 发布文章的风格因专栏而异,均自成体系,不足之处请大家指正。

一个例子带你了解MapReduce

本文关键字:大数据、Hadoop、MapReduce、WordCount

一、前期准备

1. 运行环境

想要运行WordCount程序,其实可以不需要安装任何的Hadoop软件环境,因为实际上执行计算任务的是Hadoop框架集成的各种jar包。Hadoop启动后的各项进程主要用于支持HDFS的使用,各个节点间的通讯,任务调度等等。所以如果我们只是想测试程序的可用性的话可以只新建一个Java项目,然后集成Hadoop相关的jar包,直接运行程序即可。
这种方式只限于代码测试,因为可以随时修改代码并且执行,结果也可以很方便查看。本文主要讲解MapReduce的运行流程,因此不需要搭建任何Hadoop环境,关于Hadoop任务的提交方式将在其它文章中详细说明。

2. 项目新建

  • 首先在IDEA中新建一个Maven项目:

通过一个例子谈谈你对mapreduce的理解,学习路上,# Hadoop,mapreduce,hadoop,hdfs

  • 修改pom.xml,添加Hadoop相关的依赖:
    <dependencies>
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-client</artifactId>
            <version>3.3.5</version>
        </dependency>
    </dependencies>

二、从WordCount开始

对于Hadoop来说,它的Hello World经典案例当属WordCount了,给出一段文本,我们统计出其中一共包含多少单词。我们可以使用MapReduce的思想来将任务分步执行,这样的好处是更利于任务的分割与合并。现在描述可能没有多大的感觉,我们直接来看下面两个对比。

1. 基本流程梳理

按照常规思路,我们希望最终的结果是以Map形式存储,每个key存储单词,对应的value存储统计数量。于是,我们定义一个Map<String, Integer>类型用来存储最终的结果。数据集先使用一个String[]来代替,在最后的MR完整实现中,会从文件中进行读取。

    static String[] text = {
            "what day is today",
            "today is a good day",
            "good good study",
            "day day up"
    };

2. 常规思路实现

如果只是单个的Java程序,我们可以这样做:

    public static void main(String[] args) {
        // 定义用于存放统计结果的Map结构
        Map<String, Integer> map = new HashMap<>();
        // 读取数组中的每个元素,模拟一次读取一行
        for (String line : text){
            // 将每个单词以空格分割
            String[] words = line.split(" ");
            // 读取每一个单词
            for (String word : words){
                // 每次将单词的统计结果取出,加1后放回
                if (map.containsKey(word)){
                    map.put(word, map.get(word) + 1);
                }else {
                    // 如果是第一次遇到这个单词,则存放1
                    map.put(word, 1);
                }
            }
        }
        // 输出结果
        System.out.println(map);
    }

由于是简单的Java程序,这里就不过多说明了,大家可以自己看一下注释。

3. MR思想实现

从上面的程序可以看到,我们使用循环结构,逐行逐个的处理每行字符串中的每个单词,然后将结果不断的更新到Map结构中。在这种情况下,如果我们让不同的线程【相当于不同的Hadoop节点】去处理不同行的数据,再放到Map中时,为了考虑线程安全问题,其实是无法发挥最大作用的,很多时候要等待锁的释放。如果我们用MapReduce的思想来将程序改写一些就会不同了。

  • 定义一个K-V键值对结构
    static class KeyValuePair<K,V>{
        K key;
        V value;

        public KeyValuePair(K key, V value){
            this.key = key;
            this.value = value;
        }

        @Override
        public String toString() {
            return "{" +
                    "key=" + key +
                    ", value=" + value +
                    '}';
        }
    }

以下程序的编写可以帮助大家理解MR过程中最为重要的3个核心步骤:Map、Shuffling、Reduce。这三个阶段会完成许许多多的工作,对于开发者来说我们最关心的是数据结构上的变化,因此,其中涉及到的排序等相关操作并没有去实现,想要深挖的小伙伴可以去看源码。

  • Map阶段

在这一阶段,会对数据逐行处理,key为偏移量,value则是这一行出现的数据键值对列表。

    static Map<Integer, List<KeyValuePair<String, Integer>>> doMapper(){
        Map<Integer, List<KeyValuePair<String, Integer>>> mapper = new HashMap<>();
        // 定义偏移量指标,作为key
        int offset = 0;
        for (String line : text){
            String[] words = line.split(" ");
            List<KeyValuePair<String, Integer>> list = new ArrayList<>();
            for (String word : words){
                // 将出现的单词作为键值对的key,将出现次数作为键值对的value
                KeyValuePair<String, Integer> keyValuePair = new KeyValuePair<>(word, 1);
                list.add(keyValuePair);
            }
            // 每次处理一行的数据,生成对应的键值对列表
            mapper.put(offset, list);
            // 调整偏移量,总字符加一个换行符
            offset += line.length() + 1;
        }
        return mapper;
    }

结果如下所示:

{0=[{key=what, value=1}, {key=day, value=1}, {key=is, value=1}, {key=today, value=1}], 18=[{key=today, value=1}, {key=is, value=1}, {key=a, value=1}, {key=good, value=1}, {key=day, value=1}], 38=[{key=good, value=1}, {key=good, value=1}, {key=study, value=1}], 54=[{key=day, value=1}, {key=day, value=1}, {key=up, value=1}]}
  • Shuffling阶段

在这一阶段,将会把所有的key进行排序,并把相同的value放在同一个列表中。

    static Map<String, List<Integer>> doShuffle(Map<Integer, List<KeyValuePair<String, Integer>>> mapper){
        Map<String, List<Integer>> shuffle = new HashMap<>();
        for (Integer key : mapper.keySet()){
            List<KeyValuePair<String, Integer>> keyValuePairs = mapper.get(key);
            for (KeyValuePair<String, Integer> keyValuePair : keyValuePairs){
                // 将出现过的相同单词放在同一个列表中
                if (shuffle.containsKey(keyValuePair.key)){
                    shuffle.get(keyValuePair.key).add(keyValuePair.value);
                } else {
                    // 如果是第一次记录,则创建一个列表
                    List<Integer> list = new ArrayList<>();
                    list.add(keyValuePair.value);
                    shuffle.put(keyValuePair.key, list);
                }
            }
        }
        return shuffle;
    }

此时,依然不涉及计算逻辑,结果如图所示:

{a=[1], study=[1], what=[1], today=[1, 1], is=[1, 1], up=[1], day=[1, 1, 1, 1], good=[1, 1, 1]}
  • Reduce阶段

在这一阶段,会在每个key对应的value列表中执行我们需要的计算逻辑。

    static Map<String, Integer> doReducer(Map<String, List<Integer>> shuffle){
        Map<String, Integer> reducer = new HashMap<>();
        for (String key : shuffle.keySet()){
            List<Integer> values = shuffle.get(key);
            Integer result = 0;
            // 此处对value进行处理,执行累加
            for (Integer value : values){
                result += value;
            }
            reducer.put(key, result);
        }
        return reducer;
    }

得到最终结果,执行结果如下:

{a=1, study=1, what=1, today=2, is=2, up=1, day=4, good=3}
  • 程序运行结果

通过一个例子谈谈你对mapreduce的理解,学习路上,# Hadoop,mapreduce,hadoop,hdfs

三、MapReduce

上面的例子帮大家简单的梳理了一下整体流程,这样我们就不需要debug去看每一步的执行效果了,因为只是模拟实现,所以省略了一些步骤。上面定义的KeyValuePair中出现的泛型也是整个流程的重要组成部分,实际执行计算任务时经常要根据需要合理的去定义Key与Value的类型。

1. Mapper

新建一个Class,继承Mapper,重写其中的map方法。可以先定义好泛型,然后再自动生成map方法。

import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.util.StringUtils;

import java.io.IOException;

/**
 * 以下泛型声明的是map阶段输入和输出数据的对应类型
 * KEYIN: 偏移量,为整数类型
 * VALUEIN: 每一行的字符串,为文本类型
 * KEYOUT: 单词,为文本类型
 * VALUEOUT: 出现次数1,为整数类型
 */
public class WordCountMapper extends Mapper<LongWritable, Text, Text, LongWritable> {

    /**
     * map阶段将字符的偏移量作为key,每次得到的value为一行的数据
     * @param key 字符偏移量,包含换行符
     * @param value 整行的数据
     * @param context 将结果输出到下一阶段的对象
     */
    @Override
    protected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, LongWritable>.Context context) throws IOException, InterruptedException {
        if (value != null){
            // 获取该行的数据
            String line = value.toString();
            // 根据空格分离出每个单词
            String[] words = StringUtils.split(line, ' ');
            // 将每个单词以键值对输出
            for(String word : words){
                context.write(new Text(word), new LongWritable(1));
            }

        }
    }

}

2. Reducer

新建一个Class,继承Reducer,重写其中的reduce方法。可以先定义好泛型,然后再自动生成reduce方法。

import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

import java.io.IOException;

/**
 * 以下泛型声明的是reduce阶段输入和输出数据的对应类型,输入类型对应的是Map阶段的输出
 * KEYIN: 单词,为文本类型
 * VALUEIN: 出现次数1,为整数类型
 * KEYOUT: 单词,为文本类型
 * VALUEOUT: 统计次数,为整数类型
 */
public class WordCountReducer extends Reducer<Text, LongWritable, Text, LongWritable> {

    /**
     * 本例中省略了对shuffle的自定义,获取到的是默认处理后的数据
     * @param key 单词
     * @param values 出现1次的数据列表[1,1,...]
     * @param context 将结果最终输出的对象
     */
    @Override
    protected void reduce(Text key, Iterable<LongWritable> values, Reducer<Text, LongWritable, Text, LongWritable>.Context context) throws IOException, InterruptedException {
        // 定义用于记录累加结果的变量
        long sum = 0;
        // 遍历列表,执行累加操作
        for (LongWritable value : values){
            sum += value.get();
        }
        // 输出最后的统计结果
        context.write(key, new LongWritable(sum));
    }
}

3. Executor

新建一个Class,继承Configured,并实现Tool接口,完整代码如下:

import edu.sand.mapper.WordCountMapper;
import edu.sand.reducer.WordCountReducer;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;


public class WordCountExecutor extends Configured implements Tool {

    @Override
    public int run(String[] strings) throws Exception {
        // 初始化配置,可以通过这个对象设置各种参数
        Configuration conf = new Configuration();
        // 完成Job初始化,设置任务名称
        Job job = Job.getInstance(conf, "wordCount");
        // 设置Job的运行主类
        job.setJarByClass(WordCountExecutor.class);
        // 设置Map阶段的执行类
        job.setMapperClass(WordCountMapper.class);
        // 设置Map阶段的数据输出类型
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(LongWritable.class);
        // 设置Reduce阶段的执行类
        job.setReducerClass(WordCountReducer.class);
        // 设置Reduce阶段的数据输出类型
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(LongWritable.class);
        // 指定数据输入文件路径,如果指定的是文件夹,将读取目录下所有文件
        FileInputFormat.setInputPaths(job, new Path("input/"));
        // 指定结果输出文件路径,最后一级路径会自动创建,每次重新执行时需要删除或修改名称
        FileOutputFormat.setOutputPath(job, new Path("output/wordCount"));
        // 使用job调用执行,true代表显示详细信息,成功时返回0
        return job.waitForCompletion(true) ? 0 : -1;
    }

    public static void main(String[] args) throws Exception {
        // 调用执行
        ToolRunner.run(new Configuration(), new WordCountExecutor(), args);
    }
}

4. 运行结果

  • 项目结构说明

由于是本地代码运行,所以数据输入和结果输出都保存在本地磁盘上,可以在src同级创建两个文件夹inputoutput
通过一个例子谈谈你对mapreduce的理解,学习路上,# Hadoop,mapreduce,hadoop,hdfs

  • 日志配置

如果希望看到更详细的日志输出,可以在resources文件夹下创建一个log4j.properties,内容如下:

log4j.rootLogger=INFO,stdout

log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern=%p\t%d{ISO8601}\t%r\t%c\t[%t]\t%m%n

第一行的日志级别可以设置为INOF或者DEBUG

  • 执行结果

运行后会在对应路径下自动生成一个文件夹,其中主要包含3类文件:任务执行标志文件、结果输出文件、校验文件。以crc结尾的文件为校验类文件,当任务成功执行时,会产生一个**_SUCCESS文件,具体的运行结果会存放在part-r-xxxxx**文件中,part文件的名称和个数取决于Reduce的数量以及开发者的需要。
通过一个例子谈谈你对mapreduce的理解,学习路上,# Hadoop,mapreduce,hadoop,hdfs
扫描下方二维码,加入CSDN官方粉丝微信群,可以与我直接交流,还有更多福利哦~
通过一个例子谈谈你对mapreduce的理解,学习路上,# Hadoop,mapreduce,hadoop,hdfs文章来源地址https://www.toymoban.com/news/detail-775178.html

到了这里,关于【Hadoop】一个例子带你了解MapReduce的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 通过例子深入了解c++/c的构建系统

    C/C++ is the mother of many popular programming languages out there today, all the fancy programming languages we use today like Python, JavaScript are built using C/C++. For example, the standard python interpreter  CPython  is built using C and the most popular JavaScript implementation  V8  is built using C/C++, C/C++ also powers most of the underlyin

    2024年02月04日
    浏览(30)
  • 借助一个例子简要了解机器学习

    环境: azureml_py boot_size harness_size 0 39 58 1 38 58 2 37 52 3 39 58 4 38 57 5 35 52 6 37 55 7 36 53 8 35 49 9 40 54 10 40 59 11 36 56 12 38 53 13 39 58 14 42 57 15 42 58 16 36 56 17 36 51 18 35 50 19 41 59 20 42 59 21 38 59 22 37 55 23 35 50 24 40 55 25 36 52 26 35 53 27 39 54 28 41 61 29 37 56 30 35 55 31 41 60 32 39 57 33 41 56 34 42 61 35 42 58 36 3

    2024年01月25日
    浏览(40)
  • MapReduce是Hadoop的一个核心组件,它是一个编程模型和计算框架

    MapReduce是Hadoop的一个核心组件,它是一个编程模型和计算框架,用于处理和生成大数据集。MapReduce模型将大数据处理任务分解为两个阶段:Map阶段和Reduce阶段。在Map阶段,输入的数据被分割成一系列的键值对,然后通过用户定义的函数进行处理,生成中间的键值对。在Reduce阶

    2024年02月03日
    浏览(38)
  • 谈谈你对倒排索引的理解

    谈谈你对倒排索引的理解 在聊倒排索引之前,我们需要先了解一下‘索引’概念。 什么是索引呢? 索引是为了加速对表中数据行的检索而创建的一种分散的存储结构 。 通俗的来讲索引好比就是 新华字段中拼音的首字母还有偏旁 ,根据拼音的首字母和偏旁能很快的查找到你

    2024年02月07日
    浏览(38)
  • 18.谈谈你对JSON的理解

    JSON 是一种 基于文本的轻量级的数据交换格式 。它可以被 任何的编程语言读取 和作为 数据格式 来传递。 在项目开发中,使用 JSON 作为前后端数据交换的方式 。在前端通过将一个符合 JSON 格式的数据结构序列化为 JSON 字符串,然后将它传递到后端,后端通过 JSON 格式的字符

    2024年02月22日
    浏览(44)
  • 谈谈你对 Spring AOP 的理解

    Java面试目录 谈谈你对 Spring AOP 的理解 Spring AOP是面向切面编程,通过代理模式来实现。 我们将与业务逻辑无关,同时又需要在业务执行前后调用的逻辑封装起来,利用代理来进行统一调度。可以减少系统的重复代码,降低耦合度,增加可维护性。使用场景包括:事务处理,

    2024年01月22日
    浏览(47)
  • 让我们谈谈你对 ThreadLocal 的理解

    从 JDK1.2 开始,ThreadLocal 是一个被用来存储线程本地变量的类。在 ThreadLocal 中的变量在线程之间是独立的。当多个线程访问 ThreadLocal 中的变量,它们事实上访问的是自己当前线程在内存中的变量,这能确保这些变量是线程安全的。 我们通常使用 ThreadLocal 解决线程中的变量冲

    2023年04月16日
    浏览(38)
  • hadoop 学习:mapreduce 入门案例一:WordCount 统计一个文本中单词的个数

    这个案例的需求很简单 现在这里有一个文本wordcount.txt,内容如下 现要求你使用 mapreduce 框架统计每个单词的出现个数  这样一个案例虽然简单但可以让新学习大数据的同学熟悉 mapreduce 框架 (1)创建一个 maven 工程,maven 工程框架可以选择quickstart (2)在properties中添加 had

    2024年02月11日
    浏览(43)
  • 【面试题】谈谈你对IOC和AOP的理解

    IoC(Inverse of Control:控制反转)是一种设计思想,就是将 原本在程序中手动创建对象的控制权,交由Spring框架来管理 。IOC思想是基于IOC容器来完成的,IOC容器底层就是对象工厂(BeanFactory接口)。IOC的原理是基于xml解析、工厂设计模式、反射来实现的。 IoC 容器实际上就是个

    2024年02月05日
    浏览(79)
  • 1、什么是面向对象?谈谈你对面向对象的理解

    对比面向过程,是两种不同的处理问题的角度 面向过程更注重事情的每一个步骤及顺序,面向对象更注重事情有哪些参与者(对象)、及各自需要做什么 比如 : 洗衣机洗衣服 面向过程会将任务拆解成一系列的步骤(函数),1、打开洗衣机 …2、放衣服…3、放洗衣粉…4、清洗…

    2024年02月13日
    浏览(42)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包