深度学习的Natural Language Processing:从Word2Vec到BERT

这篇具有很好参考价值的文章主要介绍了深度学习的Natural Language Processing:从Word2Vec到BERT。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1.背景介绍

自然语言处理(Natural Language Processing,NLP)是人工智能(Artificial Intelligence,AI)领域的一个重要分支,其目标是让计算机理解、生成和翻译人类语言。随着大数据、云计算和深度学习等技术的发展,深度学习的NLP(Deep Learning for NLP)在处理自然语言文本和语音的能力得到了显著提升。在本文中,我们将从Word2Vec到BERT,深入探讨深度学习的NLP的核心概念、算法原理、具体操作步骤以及代码实例。

2.核心概念与联系

2.1 Word2Vec

Word2Vec是一个基于深度学习的词嵌入(word embedding)模型,可以将词汇转换为高维的向量表示,从而捕捉词汇之间的语义关系。Word2Vec的核心思想是通过将大量的文本数据分成多个短语(sentence),然后将每个短语中的词汇映射到一个连续的向量空间中,从而实现词汇之间的相似度计算。Word2Vec的主要算法有两种:

  1. 连续Bag-of-Words模型(Continuous Bag-of-Words,CBOW):给定一个词,CBOW将该词周围的上下文词汇作为输入,通过一个三层神经网络进行训练,目标是预测给定词。
  2. Skip-Gram模型:给定一个词,Skip-Gram将该词周围的上下文词汇作为输入,通过一个三层神经网络进行训练,目标是预测给定词。

2.2 GloVe

GloVe(Global V文章来源地址https://www.toymoban.com/news/detail-775265.html

到了这里,关于深度学习的Natural Language Processing:从Word2Vec到BERT的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • D2L学习记录-10-词嵌入word2vec

    《动手学深度学习 Pytorch 第1版》第10章 自然语言处理 第1、2、3 和 4节 (词嵌入) 词向量:自然语言中,词是表义的基本单元。词向量是用来表示词的向量。 词嵌入 (word embedding):将词映射为实数域向量的技术称为词嵌入。 词嵌入出现的原因:由于 one-hot 编码的词向量不能准确

    2024年02月14日
    浏览(47)
  • Word2Vec详解

    Word2Vec 基本思想:通过训练将每一个词映射成一个固定长度的向量,所有向量构成一个词向量空间,每一个向量(单词)可以看作是向量空间中的一个点,意思越相近的单词距离越近。 如何把词转换为向量? 通常情况下,我们可以维护一个查询表。表中每一行都存储了一个特

    2024年02月13日
    浏览(44)
  • 机器学习算法原理lightgbm、word2vec、cnn、lstm、textcnn、bert、transformer、随机森林、lr

    首先需要说一说GBDT,它是一种基于决策树的集成算法,它使用的集成方法是boosting,其主要思想是通过多次迭代,每次迭代都学习一棵CART树来拟合之前 t-1 棵树的预测结果与训练样本真实值的残差,最终得到一个准确度更高的模型。 全称为Gradient Boosting Decision Tree。它是一种

    2024年02月13日
    浏览(38)
  • 论文精读--word2vec

    word2vec从大量文本语料中以无监督方式学习语义知识,是用来生成词向量的工具 把文本分散嵌入到另一个离散空间,称作分布式表示,又称为词嵌入(word embedding)或词向量 We propose two novel model architectures for computing continuous vector representations of words from very large data sets. The qua

    2024年02月22日
    浏览(48)
  • NLP/Natural Language Processing

    自然语言处理( Natural Language Processing, NLP)是计算机科学领域与人工智能领域中的一个重要方向,也就是人们常说的「自然语言处理」,就是研究如何让计算机读懂人类语言,即将人的自然语言转换为计算机可以阅读的指令。 它研究能实现人与计算机之间用自然语言进行有效通

    2024年02月03日
    浏览(53)
  • 大语言模型系列-word2vec

    在前文大语言模型系列-总述已经提到传统NLP的一般流程: 传统的分词向量化的手段是进行简单编码(如one-hot),存在如下缺点: 如果词库过大, one-hot编码生成的向量会造成维度灾难 one-hot编码生成的向量是稀疏的,它们之间的距离相等,无法捕捉单词之间的语义关系。

    2024年01月18日
    浏览(37)
  • Word2Vec实现文本识别分类

    🍨 本文为🔗365天深度学习训练营 中的学习记录博客 🍦 参考文章:365天深度学习训练营-第N4周:用Word2Vec实现文本分类 🍖 原作者:K同学啊|接辅导、项目定制 语言环境:Python3.9.12 编译器:jupyter notebook 深度学习环境:TensorFlow2 本次内容我本来是使用miniconda的环境的,但是好

    2024年02月16日
    浏览(43)
  • Word2Vec的CBOW模型

    Word2Vec中的CBOW(Continuous Bag of Words)模型是一种用于学习词向量的神经网络模型。CBOW的核心思想是根据上下文中的周围单词来预测目标单词。 例如,对于句子“The cat climbed up the tree”,如果窗口大小为5,那么当中心单词为“climbed”时,上下文单词为“The”、“cat”、“up”

    2024年02月02日
    浏览(47)
  • 一文了解Word2vec 阐述训练流程

      在机器学习领域,嵌入(embeddings)的概念无疑是其中最令人兴奋的创新之一。想象一下,每当你与 Siri 、 Google Assistant 、 Alexa 或 Google Translate 互动,甚至在使用具有下一个词预测功能的手机输入法(比如苹果输入法、搜狗输入法)时,你其实都在享受词嵌入模型带来的

    2024年02月05日
    浏览(48)
  • 【NLP】Word2Vec原理和认识

            Word2Vec是NLP领域的最新突破。Tomas Mikolov是捷克计算机科学家,目前是CIIRC(捷克信息学,机器人和控制论研究所)的研究员,是word2vec研究和实施的主要贡献者之一。词嵌入是解决NLP中许多问题不可或缺的一部分。它们描绘了人类如何向机器理解语言。您可以将它

    2024年02月12日
    浏览(36)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包