Flink on K8S生产集群使用StreamPark管理

这篇具有很好参考价值的文章主要介绍了Flink on K8S生产集群使用StreamPark管理。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

(一)直接部署(手动测试用,不推荐)

Flink on Native Kubernetes 目前支持 Application 模式和 Session 模式,两者对比 Application 模式部署规避了 Session 模式的资源隔离问题、以及客户端资源消耗问题,因此生产环境更推荐采用 Application Mode 部署 Flink 任务。下面我们分别看看使用原始脚本的方式和使用 StreamPark 开发部署一个 Flink on Native Kubernetes 作业的流程。
使用脚本方式部署Kubernetes

  1. 在 Flink 客户端节点准备 kubectl 和 Docker 命令运行环境,创建部署 Flink 作业使用的 Kubernetes Namespace 和 Service Account 以及进行 RBAC
  2. 编写 Dockerfile 文件,将 Flink 基础镜像和用户的作业 Jar 打包到一起
Explain
FROM flink:1.13.6-scala_2.11
RUN mkdir -p $FLINK_HOME/usrlib
COPY my-flink-job.jar $FLINK_HOME/usrlib/my-flink-job.jar
  1. 使用 Flink 客户端脚本启动 Flink 任务
./bin/flink run-application \
    --target kubernetes-application \
    -Dkubernetes.namespace=flink-cluster \
    -Dkubernetes.jobmanager.service-account=default \
    -Dkubernetes.cluster-id=my-first-application-cluster \
    -Dkubernetes.container.image=relx_docker_url/streamx/relx_flink_1.13.6-scala_2.11:latest \
    -Dkubernetes.rest-service.exposed.type=NodePort \
    local:///opt/flink/usrlib/my-flink-job.jar
  1. 使用 Kubectl 命令获取到 Flink 作业的 WebUI 访问地址和 JobId
kubectl -n flink-cluster get svc
  1. 使用Flink命令停止作业
./bin/flink cancel
    --target kubernetes-application
    -Dkubernetes.cluster-id=my-first-application-cluster
    -Dkubernetes.namespace=flink-cluster <jobId

以上就是使用 Flink 提供的最原始的脚本方式把一个 Flink 任务部署到 Kubernetes 上的过程,只做到了最基本的任务提交,如果要达到生产使用级别,还有一系列的问题需要解决,如:方式过于原始无法适配大批量任务、无法记录任务checkpoint 和实时状态跟踪、任务运维和监控困难、无告警机制、 无法集中化管理等等。

(二)使StreamPark平台(推荐)

官网:https://streampark.apache.org/docs/intro/

一、登陆

#地址
http://xxxx:10000/

二、 平台初始化配置

2.1 配置Docker Register

Flink on K8S生产集群使用StreamPark管理,Flink,flink,kubernetes,大数据,streampark,k8s

2.2 配置Flink Home

注:按需配置,需要下载好flink的安装包,建议放到nfs共享文件夹中,即使streampark宕机恢复也不影响

Flink on K8S生产集群使用StreamPark管理,Flink,flink,kubernetes,大数据,streampark,k8s

2.3 告警配置

Flink on K8S生产集群使用StreamPark管理,Flink,flink,kubernetes,大数据,streampark,k8s

2.4 团队管理

为了方便管理公司内不同部门的作业,StreamPark 支持了团队管理。系统管理员可以在 StreamPark 上为不同部门创建不同的团队。
团队类似于工作空间的概念,当选择团队后平台只会展示当前团队的作业和项目。如果用户在多个团队有权限,切换到其他团队即可查看或操作相应团队的作业。
Flink on K8S生产集群使用StreamPark管理,Flink,flink,kubernetes,大数据,streampark,k8s
2.5 权限配置

注:
ADMIN 创建或修改用户时可以指定用户类型,用户类型有 ADMIN 和 USER 两种。

  • ADMIN 表示系统管理员,即:StreamPark 的超级管理员,有 StreamPark 管理页面以及各个团队的所有权限。
  • USER 表示平台的普通用户。创建 USER 只是创建账号的过程,默认普通用户在平台没有任何权限。创建 USER 后且系统管理员给 USER 在一些团队绑定角色后,USER 才会在相应团队有权限。
    Flink on K8S生产集群使用StreamPark管理,Flink,flink,kubernetes,大数据,streampark,k8s

三、k8s集群初始化配置

基础环境配置包括 Kubernetes 和 Docker 仓库信息以及 Flink 客户端的信息配置。对于 Kubernetes 基础环境最为简单的方式是直接拷贝 Kubernetes 节点的 .kube/config 到 StreamPark 节点用户目录,之后使用 kubectl 命令创建 Flink 专用的 Kubernetes Namespace 以及进行 RBAC 配置。

# 创建Flink作业使用的k8s namespace
kubectl create namespace flink
kubectl create serviceaccount flink
# 对flink用户进行RBAC资源绑定
kubectl create clusterrolebinding flink-role-bind --clusterrole=edit --serviceaccount=flink:flink

四、任务发布

StreamPark 做好基础环境配置之后只需要三步即可开发部署一个 Flink 作业:
Flink on K8S生产集群使用StreamPark管理,Flink,flink,kubernetes,大数据,streampark,k8s
StreamPark 既支持 Upload Jar 也支持直接编写 Flink SQL 作业, Flink SQL 作业只需要输入SQL 和 依赖项即可, 该方式大大提升了开发体验, 并且规避了依赖冲突等问题,对此部分本文不重点介绍。
这里需要选择部署模式为 kubernetes application, 并且需要在作业开发页面进行以下参数的配置:红框中参数为 Flink on Kubernetes 基础参数。

配置说明:
Kubernetes Namespace:flink任务建议统一放入flink命名空间内
Kubernetes ClusterId:任务名自定义即可
Flink Base Docker Image :storage/bigdata/flink:1.13.0-scala_2.12-java8s、torage/bigdata/flink:1.14.4-scala_2.12-java8、storage/bigdata/flink:1.16.2-scala_2.12-java8(如需新的版本可自行添加)
Rest-Service Exposed Type:如需进入flink的网页端页面选用NodePort,不需要进入则选用ClusterIp,不要用loadbalancer,会进入公网ip

Flink on K8S生产集群使用StreamPark管理,Flink,flink,kubernetes,大数据,streampark,k8s

下面参数为 Flink 作业和资源相关的参数,Resolve Order 的选择与代码加载模式有关,对于 DataStream API 开发的 Upload Jar上传的作业选择使用 Child-first,Flink SQL 作业选择使用 Parent-first 加载。
Flink on K8S生产集群使用StreamPark管理,Flink,flink,kubernetes,大数据,streampark,k8s
最后就是下面这两个重量级参数了,对于 Native Kubernetes 而言,k8s-pod-template 一般只需要进行 pod-template 配置即可,Dynamic Option 是 pod-template 参数的补充,对于一些个性化配置可以在 Dynamic Option 中配置。更多 Dynamic Option 直接参考 Flink 官网即可。

测试用:

Flink on K8S生产集群使用StreamPark管理,Flink,flink,kubernetes,大数据,streampark,k8s
生产用
Pod Template配置

apiVersion: v1
kind: Pod
metadata:
  #pod配置名称,不需要修改
  name: pod-template
spec:
  #选择k8s的namespace,与界面配置要一致
  serviceAccount: flink
  containers:
  #flink启动的默认名称,不可更改
  - name: flink-main-container
    env:
    #时区配置,默认时区与中国地区时区不一致
      - name: TZ
        value: Asia/Shanghai
    image:
    #持久化保存,容器内地址与nfs地址的映射
    volumeMounts:
      - name: data-flink
      #容器内的地址
        mountPath: /opt/flink/job  
      - name: data-streampark
        mountPath: /log/streampark       
  imagePullSecrets:
  - name: regsecret
  #配置容器内的host,可自己调整,格式不要改
  hostAliases:
    - ip: "xxx"
      hostnames:
      - "xxx"
    - ip: "xxx"
      hostnames:
      - "xxx"
    - ip: "xxx"
      hostnames:
      - "xxx"
  #与上述volumeMounts对应,配置实际的分布式或者本地地址
  volumes:
    - name: data-flink
    #公司nfs地址配置,配置前需要检查nfs中是否有该文件夹
      nfs:
        path: /data_flink
        server: xxx
    - name: data-streampark
      nfs:
        path: /data_streampark
        server: xxx

Dynamic Properties

#K8s的service账户,flink命令空间使用flink即可
-Dkubernetes.service-account=flink
#容器镜像拉取策略,建议是always(否则更新配置会不生效)。(Always 总是拉取镜像;IfNotPresent 本地有则使用本地镜像,不拉取;Never 只使用本地镜像,从不拉取,即使本地没有)
-Dkubernetes.container.image.pull-policy=Always
#checkpoint及savepoints持久化时配置
-Dstate.checkpoint-storage=filesystem
-Dstate.checkpoints.dir=file:///opt/flink/job/checkpoints/test
-Dstate.savepoints.dir=file:///opt/flink/job/savepoints/test
#log日志持久化时配置
-Dkubernetes.flink.log.dir=/opt/flink/job/logs/test
#与界面配置保持一致
-Dkubernetes.cluster-id=test
#flink任务高可用配置
-Dhigh-availability.type=kubernetes
-Dhigh-availability=org.apache.flink.kubernetes.highavailability.KubernetesHaServicesFactory
-Dhigh-availability.storageDir=file:///opt/flink/job/recovery/test
-Drestart-strategy=fixed-delay
-Drestart-strategy.fixed-delay.attempts=3

五、作业上线

作业开发完成之后是作业上线环节,在这一环节中 StreamPark 做了大量的工作,具体如下:

  • 准备环境
  • 作业中的依赖下载
  • 构建作业(打JAR包)
  • 构建镜像
  • 推送镜像到远程仓库
    对于用户来说: 只需要点击任务列表中的云状的上线按钮即可。
    Flink on K8S生产集群使用StreamPark管理,Flink,flink,kubernetes,大数据,streampark,k8s
    在镜像构建和推送的时候我们可以看到 StreamPark 做的一系列工作: 读取配置、构建镜像、推送镜像到远程仓库…
    Flink on K8S生产集群使用StreamPark管理,Flink,flink,kubernetes,大数据,streampark,k8s

六、作业提交

最后只需要点击 Operation 里 start Application 按钮便可启动一个 Flink on Kubernetes 作业,作业启动成功之后点击作业名便可跳转到 Jobmanager WebUI 页面、整个过程非常简单丝滑。
Flink on K8S生产集群使用StreamPark管理,Flink,flink,kubernetes,大数据,streampark,k8s
整个过程仅需上述三步,即可完成在 StreamPark 上开发和部署一个Flink on Kubernetes 作业。而 StreamPark 对于 Flink on Kubernetes 的支持远远不止提交个任务这么简单。

七、作业管理

任务恢复:
savepoint选择Dynamic Properties配置的地址+启动时创建的文件夹名(文件夹名需要去挂载的nfs上查看,且需要具体的chk名),
如配置为:-Dstate.checkpoints.dir=file:///opt/flink/job/checkpoints/test
此处应填写:/opt/flink/job/checkpoints/test/6b73526ea07b1c6b84b9aae159b05aaa/chk-32
Flink on K8S生产集群使用StreamPark管理,Flink,flink,kubernetes,大数据,streampark,k8s
Flink on K8S生产集群使用StreamPark管理,Flink,flink,kubernetes,大数据,streampark,k8s文章来源地址https://www.toymoban.com/news/detail-775393.html

八、StreamPark不足

  • StreamPark不支持 Flink 作业 Metric 监控
  • 每次增加作业都会形成一个新的镜像,镜像过大
  • streampark:2.1.2版本腾讯k8s(TKE)安装存在bug,运行状态一直显示starting

到了这里,关于Flink on K8S生产集群使用StreamPark管理的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 如何使用装rancher安装k8s集群(k8s集群图形化管理工具)

    kubernetes集群的图形化管理工具主要有以下几种: 1、 Kubernetes Dashborad: Kubernetes 官方提供的图形化工具 2、 Rancher: 目前比较主流的企业级kubernetes可视化管理工具 3、各个云厂商Kubernetes集成的管理器 4、 Kuboard: 国产开源Kubernetes可视化管理工具 本篇我们来学习 主流的企业级kube

    2024年02月11日
    浏览(41)
  • flink on k8s几种创建方式

    在此之前需要部署一下私人docker仓库,教程搭建 Docker 镜像仓库 注意:每台节点的daemon.json都需要配置 \\\"insecure-registries\\\": [\\\"http://主机IP:8080\\\"] 并重启 Session 模式是指在 Kubernetes 上启动一个共享的 Flink 集群(由 JobManager 和多个 TaskManagers 组成),然后多个 Flink 作业可以提交到这个

    2024年02月03日
    浏览(39)
  • 【K8s】3# 使用kuboard管理K8s集群(NFS存储安装)

    最完整的学习文档莫过于官网:直达地址:Kuboard for K8S Kubernetes 对 Pod 进行调度时,以当时集群中各节点的可用资源作为主要依据,自动选择某一个可用的节点,并将 Pod 分配到该节点上。在这种情况下,Pod 中容器数据的持久化如果存储在所在节点的磁盘上,就会产生不可预

    2024年01月20日
    浏览(46)
  • k8s集群生产环境的问题处理

    2 k8s上的服务均无法访问 执行命令 kubectl get pods -ALL ,k8s集群中的服务均是running状态 1 kuboard 网页无法访问 kuboard无法通过浏览器访问,但是查看端口是被占用的

    2024年02月12日
    浏览(41)
  • Flink 内容分享(十九):理想汽车基于Flink on K8s的数据集成实践

    目录 数据集成的发展与现状 数据集成的落地实践 1. 数据集成平台架构 2. 设计模型 3. 典型场景 4. 异构数据源 5. SQL 形式的过滤条件 数据集成云原生的落地实践 1. 方案选型 2. 状态判断及日志采集 3. 监控告警 4. 共享存储 未来规划 理想汽车数据集成的发展经历了四个阶段:

    2024年02月01日
    浏览(47)
  • flink集群与资源@k8s源码分析-集群

    本文是flink集群与资源@k8s源码分析系列的第二篇-集群 下面详细分析各用例 k8s集群支持session和application模式,job模式将会被废弃,本文分析session模式集群 Configuration作为配置容器,几乎所有的构建需要从配置类获取配置项,这里不显示关联关系 1. 用户命令行执行kubernates-ses

    2024年02月07日
    浏览(46)
  • 云原生之深入解析Flink on k8s的运行模式与实战操作

    Flink 核心是一个流式的数据流执行引擎,并且能够基于同一个 Flink 运行时,提供支持流处理和批处理两种类型应用。其针对数据流的分布式计算提供了数据分布,数据通信及容错机制等功能。 Flink 官网 不同版本的文档 flink on k8s 官方文档 GitHub 地址 官方文档 Flink on yarn 有三

    2024年02月13日
    浏览(51)
  • 搭建单机版K8S运行Flink集群

    环境要求 操作系统: CentOS 7.x 64位 Kubernetes版本:v1.16.2 Docker版本:19.03.13-ce Flink版本:1.14.3 使用中国YUM及镜像源  1.安装Kubernetes: 1.1 创建文件:/etc/yum.repos.d/kubernetes.repo,内容如下: 1.2  执行安装命令:  1.3 启动kubelet服务并设置开机自启: 2.安装Docker: 2.1 创建文件:

    2023年04月26日
    浏览(47)
  • 第3关 二进制形式安装K8s高可用生产级集群

    ------ 课程视频同步分享在今日头条和B站 大家好,我是博哥爱运维,下面是这次安装k8s集群相关系统及组件的详细版本号 Ubuntu 22.04.3 LTS k8s: v1.27.5 containerd: 1.6.23 etcd: v3.5.9 coredns: 1.11.1 calico: v3.24.6 下面是此次虚拟机集群安装前的IP等信息规划(完全模拟一个中小型企业K8S集群)

    2024年02月04日
    浏览(51)
  • flink集群与资源@k8s源码分析-运行时

    运行时提供了Flink作业运行过程依赖的基础执行环境,包含Dispatcher、ResourceManager、JobManager和TaskManager等核心组件,本节分析资源相关运行时组件构建和启动。 flink没有使用spring,缺少ioc的构建过程相当复杂,所有依赖手动关联和置入,为了共享组件,flink使用了很多中间持有

    2024年02月07日
    浏览(39)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包