【stable diffusion LORA训练】改进lora-scripts,命令行方式训练LORA,支持SDXL训练

这篇具有很好参考价值的文章主要介绍了【stable diffusion LORA训练】改进lora-scripts,命令行方式训练LORA,支持SDXL训练。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

分享下自己改进的一个lora训练脚本,在ubuntu下如果SD-WEBUI的环境已经搭好的话,只需要下载lora-script就可以支持训练了,直接命令行方式训练。

首先,我们需要克隆下项目:

git clone https://github.com/Akegarasu/lora-scripts

其次,更改项目里的train.sh脚本如下

#!/bin/bash
# LoRA train script by @Akegarasu

# Train data path | 设置训练用模型、图片
#pretrained_model="/data/models/checkpoint/theAllysMixXSDXL_v10.safetensors" # base model path | 底模路径 #绘画风XL
pretrained_model="/data/models/checkpoint/hellopure_V30a.safetensors" # base model path | 底模路径 #绘画风
#pretrained_model="/data/models/checkpoint/orangechillmix_v70Fixed.safetensors" # base model path | 底模路径 #真实风

is_v2_model=0                             # SD2.0 model | SD2.0模型 2.0模型下 clip_skip 默认无效
parameterization=0                        # parameterization | 参数化 本参数需要和 V2 参数同步使用 实验性功能
train_data_dir="/data/models/Train/image/"              # train dataset path | 训练数据集路径
reg_data_dir=""                           # directory for regularization images | 正则化数据集路径,默认不使用正则化图像。

# Network settings | 网络设置
network_module="networks.lora" # 在这里将会设置训练的网络种类,默认为 networks.lora 也就是 LoRA 训练。如果你想训练 LyCORIS(LoCon、LoHa) 等,则修改这个值为 lycoris.kohya
network_weights=""             # pretrained weights for LoRA network | 若需要从已有的 LoRA 模型上继续训练,请填写 LoRA 模型路径。
network_dim=128                 # network dim | 常用 4~128,不是越大越好
network_alpha=128               # network alpha | 常用与 network_dim 相同的值或者采用较小的值,如 network_dim的一半 防止下溢。默认值为 1,使用较小的 alpha 需要提升学习率。
#network_dim要和network_alpha一致,network_dim默认32,角色可以到96。画风可以到128,影响最终输出的模型文件尺寸

# Train related params | 训练相关参数
resolution="768,768"  # image resolution w,h. 图片分辨率,宽,高。支持非正方形,但必须是 64 倍数。
batch_size=4          # batch size
max_train_epoches=8  # max train epoches | 最大训练 epoch,5~10,一般为6
save_every_n_epochs=2 # save every n epochs | 每 N 个 epoch 保存一次

#train_unet_only=1            # train U-Net only | 仅训练 U-Net,开启这个会牺牲效果大幅减少显存使用。6G显存可以开启,训SDXL可以考虑开启
train_unet_only=0            # train U-Net only | 仅训练 U-Net,开启这个会牺牲效果大幅减少显存使用。6G显存可以开启
train_text_encoder_only=0    # train Text Encoder only | 仅训练 文本编码器
stop_text_encoder_training=0 # stop text encoder training | 在第N步时停止训练文本编码器

noise_offset="0" # noise offset | 在训练中添加噪声偏移来改良生成非常暗或者非常亮的图像,如果启用,推荐参数为0.1
keep_tokens=0    # keep heading N tokens when shuffling caption tokens | 在随机打乱 tokens 时,保留前 N 个不变。
min_snr_gamma=0  # minimum signal-to-noise ratio (SNR) value for gamma-ray | 伽马射线事件的最小信噪比(SNR)值  默认为 0

# Learning rate | 学习率
lr="1e-4" # learning rate | 学习率,在分别设置下方 U-Net 和 文本编码器 的学习率时,该参数失效
unet_lr="1e-4" # U-Net learning rate | U-Net 学习率
text_encoder_lr="1e-5" # Text Encoder learning rate | 文本编码器 学习率
lr_scheduler="cosine_with_restarts" # "linear", "cosine", "cosine_with_restarts", "polynomial", "constant", "constant_with_warmup", "adafactor"
lr_warmup_steps=0                   # warmup steps | 学习率预热步数,lr_scheduler 为 constant 或 adafactor 时该值需要设为0。
lr_restart_cycles=1                 # cosine_with_restarts restart cycles | 余弦退火重启次数,仅在 lr_scheduler 为 cosine_with_restarts 时起效。

# 优化器设置
optimizer_type="AdamW8bit" # Optimizer type | 优化器类型 默认为 AdamW8bit,可选:AdamW AdamW8bit Lion Lion8bit SGDNesterov SGDNesterov8bit DAdaptation AdaFactor prodigy

# Output settings | 输出设置
output_name="tblife-dzpg3"           # output model name | 模型保存名称
save_model_as="safetensors" # model save ext | 模型保存格式 ckpt, pt, safetensors

# Resume training state | 恢复训练设置
save_state=0 # save state | 保存训练状态 名称类似于 <output_name>-??????-state ?????? 表示 epoch 数
resume=""    # resume from state | 从某个状态文件夹中恢复训练 需配合上方参数同时使用 由于规范文件限制 epoch 数和全局步数不会保存 即使恢复时它们也从 1 开始 与 network_weights 的具体实现操作并不一致

# 其他设置
min_bucket_reso=256              # arb min resolution | arb 最小分辨率
max_bucket_reso=1024             # arb max resolution | arb 最大分辨率
persistent_data_loader_workers=1 # persistent dataloader workers | 保留加载训练集的worker,减少每个 epoch 之间的停顿
clip_skip=2                      # clip skip | 玄学 一般用 2
multi_gpu=0                      # multi gpu | 多显卡训练 该参数仅限在显卡数 >= 2 使用
lowram=0                         # lowram mode | 低内存模式 该模式下会将 U-net 文本编码器 VAE 转移到 GPU 显存中 启用该模式可能会对显存有一定影响

# LyCORIS 训练设置
algo="lora"  # LyCORIS network algo | LyCORIS 网络算法 可选 lora、loha、lokr、ia3、dylora。lora即为locon
conv_dim=4   # conv dim | 类似于 network_dim,推荐为 4
conv_alpha=4 # conv alpha | 类似于 network_alpha,可以采用与 conv_dim 一致或者更小的值
dropout="0"  # dropout | dropout 概率, 0 为不使用 dropout, 越大则 dropout 越多,推荐 0~0.5, LoHa/LoKr/(IA)^3暂时不支持

# 远程记录设置
use_wandb=0         # use_wandb | 启用wandb远程记录功能
wandb_api_key=""    # wandb_api_key | API,通过 https://wandb.ai/authorize 获取
log_tracker_name="" # log_tracker_name | wandb项目名称,留空则为"network_train"

# 根据参数决定输出的文件和训练参数
# 参数1为output_name 参数2不输则训练1.5的模型,输入"xl"则训练xl的模型,输入错误也还是训练1.5模型

if [ -n "$1" ]; then  
  output_name="$1" 

  pretrained_model="/data/models/checkpoint/hellopure_V30a.safetensors" # 25D模型
  resolution="768,1024"
  train_unet_only=0
  batch_size=3
  xl_flag=0
fi

if [ "$2" = "xl" ]; then
  pretrained_model="/data/models/checkpoint/theAllysMixXSDXL_v10.safetensors" #25DXL模型
  resolution="768,896" #使用768,1024都会爆显存,催悲
  train_unet_only=1
  batch_size=1
  xl_flag=1
fi

echo "extend by @Jim[231203]"
echo "==========将以以下参数训练模型=========="  
echo "输出文件:$output_name"
echo "底模模型:$pretrained_model"
echo "分辨率:$resolution"
echo "批量大小:$batch_size"
echo "训练深度:$network_dim"
echo "总epoch:$max_train_epoches"
echo "仅训练UNET:$train_unet_only"
echo "========================================"

# ============= DO NOT MODIFY CONTENTS BELOW | 请勿修改下方内容 =====================
export HF_HOME="huggingface"
export TF_CPP_MIN_LOG_LEVEL=3

extArgs=()
launchArgs=()
if [[ $multi_gpu == 1 ]]; then launchArgs+=("--multi_gpu"); fi

if [[ $is_v2_model == 1 ]]; then
  extArgs+=("--v2")
else
  extArgs+=("--clip_skip $clip_skip")
fi

if [[ $parameterization == 1 ]]; then extArgs+=("--v_parameterization"); fi

if [[ $train_unet_only == 1 ]]; then extArgs+=("--network_train_unet_only"); fi

if [[ $train_text_encoder_only == 1 ]]; then extArgs+=("--network_train_text_encoder_only"); fi

if [[ $network_weights ]]; then extArgs+=("--network_weights $network_weights"); fi

if [[ $reg_data_dir ]]; then extArgs+=("--reg_data_dir $reg_data_dir"); fi

if [[ $optimizer_type ]]; then extArgs+=("--optimizer_type $optimizer_type"); fi

if [[ $optimizer_type == "DAdaptation" ]]; then extArgs+=("--optimizer_args decouple=True"); fi

if [[ $save_state == 1 ]]; then extArgs+=("--save_state"); fi

if [[ $resume ]]; then extArgs+=("--resume $resume"); fi

if [[ $persistent_data_loader_workers == 1 ]]; then extArgs+=("--persistent_data_loader_workers"); fi

if [[ $network_module == "lycoris.kohya" ]]; then
  extArgs+=("--network_args conv_dim=$conv_dim conv_alpha=$conv_alpha algo=$algo dropout=$dropout")
fi

if [[ $stop_text_encoder_training -ne 0 ]]; then extArgs+=("--stop_text_encoder_training $stop_text_encoder_training"); fi

if [[ $noise_offset != "0" ]]; then extArgs+=("--noise_offset $noise_offset"); fi

if [[ $min_snr_gamma -ne 0 ]]; then extArgs+=("--min_snr_gamma $min_snr_gamma"); fi

if [[ $use_wandb == 1 ]]; then
  extArgs+=("--log_with=all")
else
  extArgs+=("--log_with=tensorboard")
fi

if [[ $wandb_api_key ]]; then extArgs+=("--wandb_api_key $wandb_api_key"); fi

if [[ $log_tracker_name ]]; then extArgs+=("--log_tracker_name $log_tracker_name"); fi

if [[ $lowram ]]; then extArgs+=("--lowram"); fi

#SDXL参数:1.train_unet_only必须打开(显存使用超过16G),(2.使用脚本sdxl_train_network.py),(3.使用参数--no_half_vae)
#python -m accelerate.commands.launch ${launchArgs[@]} --num_cpu_threads_per_process=8 "./sd-scripts/sdxl_train_network.py" \

if [[ $xl_flag == "1" ]]; then
  extArgs+=("--no_half_vae")
  script_file="sdxl_train_network.py"
else
  script_file="train_network.py"
fi

python -m accelerate.commands.launch ${launchArgs[@]} --num_cpu_threads_per_process=8 "./sd-scripts/$script_file" \
  --enable_bucket \
  --pretrained_model_name_or_path=$pretrained_model \
  --train_data_dir=$train_data_dir \
  --output_dir="./output" \
  --logging_dir="./logs" \
  --log_prefix=$output_name \
  --resolution=$resolution \
  --network_module=$network_module \
  --max_train_epochs=$max_train_epoches \
  --learning_rate=$lr \
  --unet_lr=$unet_lr \
  --text_encoder_lr=$text_encoder_lr \
  --lr_scheduler=$lr_scheduler \
  --lr_warmup_steps=$lr_warmup_steps \
  --lr_scheduler_num_cycles=$lr_restart_cycles \
  --network_dim=$network_dim \
  --network_alpha=$network_alpha \
  --output_name=$output_name \
  --train_batch_size=$batch_size \
  --save_every_n_epochs=$save_every_n_epochs \
  --mixed_precision="fp16" \
  --save_precision="fp16" \
  --seed="1337" \
  --cache_latents \
  --prior_loss_weight=1 \
  --max_token_length=225 \
  --caption_extension=".txt" \
  --save_model_as=$save_model_as \
  --min_bucket_reso=$min_bucket_reso \
  --max_bucket_reso=$max_bucket_reso \
  --keep_tokens=$keep_tokens \
  --xformers --shuffle_caption ${extArgs[@]} 
  

根据自己机器的显存适当调整下参数,例如我的16G显存的3070,就只能训练768x896的,然后根据1.5和SDXL的底模分开,这样就可以训练两个不同系列的大模型下的LORA了。区分起来很简单,命令行如下:

训练1.5的
nohup trainlora mylora &

训练SDXL的
nohup trainlora mylora xl &

对应的trainlora.sh如下(可以放到/usr/sbin下,输入命令直接启动):

#!/bin/bash
input_params=$@
cd /root/sd-webui-aki-v4.4
source venv/bin/activate
cd /root/lora-scripts/
./train.sh $input_params

用起来相当方便,在开始训练时,还可以打印相关的训练参数,以免弄错(错了就是至少半个小时啊。。。)

注意:

1)里面的pretrained_model路径对应大模型底模,根据自己的需要修改

2)训练的素材,是放到/data/models/Train/下的,所有的大模型数据等被我单独挂载到一个独立分区了,image_bak是备份历史训练数据

【stable diffusion LORA训练】改进lora-scripts,命令行方式训练LORA,支持SDXL训练,lora-scripts,stable diffusion,sdxl,lora,train

3)训练完成后,lora文件会输出到lora-scripts/output/里

4)你可以用tail -f命令查看nohup.out了解训练进度文章来源地址https://www.toymoban.com/news/detail-775419.html

到了这里,关于【stable diffusion LORA训练】改进lora-scripts,命令行方式训练LORA,支持SDXL训练的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Stable diffusion LoRA 训练过程

    1、使用diffusers-0.14.0, stabel-diffusion 模型 v-1.5版本 下载diffusers-0.14.0 并解压,新建文件test.py, 写入以下: import torch from diffusers import StableDiffusionPipeline pipe = StableDiffusionPipeline.from_pretrained(\\\"./stable-diffusion-v1-5\\\") pipe = pipe.to(\\\"cuda\\\") prompt = \\\"a photo of an astronaut riding a horse on mars\\\" image = pi

    2024年02月16日
    浏览(37)
  • Stable Diffusion训练Lora模型

    以下内容参考:https://www.bilibili.com/video/BV1Qk4y1E7nv/?spm_id_from=333.337.search-card.all.clickvd_source=3969f30b089463e19db0cc5e8fe4583a 第一步,准备训练要使用的图片,即优质的图片 第二部,为这些图片打标,即精准的tag 数量建议20-50张,最多100张图片 不好的图片:模糊的,动作扭曲的,脸部被

    2024年02月12日
    浏览(45)
  • Stable Diffusion XL训练LoRA

    主要包括SDXL模型结构,从0到1训练SDXL以及LoRA教程,从0到1搭建SDXL推理流程。  【一】SDXL训练初识 Stable Diffusion系列模型的训练主要分成一下几个步骤,Stable Diffusion XL也不例外: 训练集制作:数据质量评估,标签梳理,数据清洗,数据标注,标签清洗,数据增强等。 训练文

    2024年02月07日
    浏览(24)
  • Stable diffusion 训练lora出现报错

    今天使用kohya_ss训练lora时出现三个报错,下面是解决办法。 一: 报错 UnboundLocalError: local variable \\\'pipe\\\' referenced before assignment 这个应该是项目的BUG,现在的版本还没修复,但是可以绕过它。方法如下:去 huggingface 下载预训练的基础模型到本地,复制模型的地址到红色框内并把

    2024年02月13日
    浏览(58)
  • LoRa模型训练教程(炼丹,Stable Diffusion)

    何为LoRA?LoRA并不是扩散模型专有的技术,而是从隔壁语言模型(LLM)迁移过来的,旨在解决避免将整个模型参数拷贝下来才能对模型进行调校的问题。因为大型语言模型的参数量过于恐怖,比如最近新出的GPT-4参数量约为100 万亿。 LoRA采用的方式是向原有的模型中插入新的数

    2024年02月10日
    浏览(26)
  • Stable Diffusion Lora模型训练详细教程

    通过Lora小模型可以控制很多特定场景的内容生成。 但是那些模型是别人训练好的,你肯定很好奇,我也想训练一个自己的专属模型(也叫炼丹~_~)。 甚至可以训练一个专属家庭版的模型(family model),非常有意思。 将自己的训练好的Lora模型放到stableDiffusion lora 目录中,

    2024年02月02日
    浏览(35)
  • 【 stable diffusion LORA模型训练最全最详细教程】

    个人网站:https://tianfeng.space/ 其实想写LORA模型训练很久了,一直没时间,总结一下现在主流的两种LORA模型训练方式,分别是朱尼酱的赛博丹炉和秋叶大佬的训练脚本,训练效果应该是赛博丹炉更好,我个人更推荐朱尼酱的赛博丹炉,界面炫酷,操作简单,作者也是花了很多

    2024年02月09日
    浏览(35)
  • Stable Diffusion 指定模型人物,Lora 训练全流程

    在使用 Stable Diffusion 的时候,可以选择别人训练好的 Lora,那么如何训练自己的 Lora,本篇文章介绍了介绍了如何训练Lora,如何从训练的模型中选择好的模型,如何在 Stable Diffusion 中使用。 闲话不多说,直接实际操作吧,干货满满,记得关注哦,以免找不到了。首先我们来获

    2024年02月09日
    浏览(42)
  • AutoDL 训练stable-diffusion lora模型

    1.创建镜像实例 2. 启动实例  3.启动服务 4.配置参数 4.1 基础模型选择   4.2 文件路径设置  5.点击打印训练信息  6.训练模型(点击Train model)    

    2024年02月16日
    浏览(28)
  • 炼丹!训练 stable diffusion 来生成LoRA定制模型

    LoRA,英文全称Low-Rank Adaptation of Large Language Models,直译为大语言模型的低阶适应,这是微软的研究人员为了解决大语言模型微调而开发的一项技术。 比如,GPT-3有1750亿参数,为了让它能干特定领域的活儿,需要做微调,但是如果直接对GPT-3做微调,成本太高太麻烦了。 LoRA的

    2024年03月27日
    浏览(37)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包