【动态规划】07路径问题_礼物的最大价值_C++(medium)

这篇具有很好参考价值的文章主要介绍了【动态规划】07路径问题_礼物的最大价值_C++(medium)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

题目链接:leetcode礼物的最大价值


目录

题目解析:

算法原理

1.状态表示

2.状态转移方程

3.初始化

4.填表顺序

5.返回值

编写代码


题目解析:

【动态规划】07路径问题_礼物的最大价值_C++(medium),动态规划,动态规划,c++,算法

题目让我们求怎样走才能可以拿到最高价值的珠宝

由题可得:

  • 只能从架子的左上角开始拿珠宝
  • 每次可以移动到右侧或下侧的相邻位置
  • 到达珠宝架子的右下角时,停止拿取

我们用示例一来分析:

【动态规划】07路径问题_礼物的最大价值_C++(medium),动态规划,动态规划,c++,算法

当我们沿着这条路径走的时候可以得到最大值:12


算法原理:

1.状态表示

先创建一个dp表

【动态规划】07路径问题_礼物的最大价值_C++(medium),动态规划,动态规划,c++,算法

首先先思考dp表里面的值所表示的含义(是什么?)

dp[i]表示到达i拿到最高价值的珠宝

这种状态表示怎么来的?

1.经验+题目要求

用之前或者之后的状态,推导出dp[i][j]的值;

根据最近的最近的一步,来划分问题

经验:以i位置为结尾

题目让我们求到达右下角拿到最高价值的珠宝,那么这里我们可以dp[i][j]来表示。

所以这里我们用i*j表示右下角位置;

2.状态转移方程

dp[i][j]等于什么?

因为我们只能每次可以移动到右侧或下侧的相邻位置

所以到达i位置有两种情况:

第一种:从[i-1][j]到达i位置

我们这里只要知道到达[i-1][j]拿到最高价值的珠宝,再加上[i]位置的珠宝价值(cost[i][j])

就可以得到i位置拿到最高价值的珠宝(dp[i][j]);

而“到达[i-1][j]拿到最高价值的珠宝”正好是我们的状态表示:dp[i-1][j]

【动态规划】07路径问题_礼物的最大价值_C++(medium),动态规划,动态规划,c++,算法

第二种:从[i][j-1]到达i位置

我们这里只要知道到达[i][j-1]拿到最高价值的珠宝,再加上[i]位置的珠宝价值(cost[i][j])

就可以得到i位置拿到最高价值的珠宝(dp[i][j]);

而“到达[i][j-1]拿到最高价值的珠宝”正好是我们的状态表示:dp[i][j-1]

总结这两种情况:

【动态规划】07路径问题_礼物的最大价值_C++(medium),动态规划,动态规划,c++,算法

因为题目让我们求的是拿到最高价值的珠宝

所以这里我们要取这两种情况的最大值

dp[i][j]=max(dp[i-1][j]+dp[i][j-1])+cost[i][j]

3.初始化

(保证填表的时候不越界)

由我们的状态转移方程得:

在0行0列的时候越界,所以我们这里可以在m*n的外围多加1行1列,如图:

【动态规划】07路径问题_礼物的最大价值_C++(medium),动态规划,动态规划,c++,算法

还有一个问题是:

我们要拿新增用来初始化的行和列要初始化为几呢?

这里我们需要注意的一点就是在dp[1][1]的时候,最大的珠宝价值就是他本身cost

所以我们只要在dp表里的dp[0][1]、dp[1][0]中任选一个

初始化为cost[0][0]就可以了

我们这里选择[0][1]初始化为cost[0][0]

4.填表顺序

(为了填写当前状态的时候,所需要的状态已经计算过了)

这里所需要的状态是:到达该位置的上面和左边位置的方式

所以填表顺序:

从上到下填写每一行

从左到右填写每一列

5.返回值

(根据题目要求和状态表示)

综上分析:

返回值为:dp[m][n];


编写代码:

【动态规划】07路径问题_礼物的最大价值_C++(medium),动态规划,动态规划,c++,算法文章来源地址https://www.toymoban.com/news/detail-775627.html

class Solution {
public:
    int jewelleryValue(vector<vector<int>>& frame) {
    //1.创建dp表
    //2.初始化
    //3.填表
    //4.返回结果

    int n=frame.size();
    int m=frame[0].size();
    vector<vector<int>> dp(n+1,vector<int>(m+1));
    for(int i=1;i<n+1;i++)
        for(int j=1;j<m+1;j++)
            dp[i][j]=max(dp[i-1][j],dp[i][j-1])+frame[i-1][j-1];
    return dp[n][m];
    }
};

到了这里,关于【动态规划】07路径问题_礼物的最大价值_C++(medium)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 剑指offer(C++)-JZ47:礼物的最大价值(算法-动态规划)

    作者:翟天保Steven 版权声明:著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处 题目描述: 在一个mtimes nm×n的棋盘的每一格都放有一个礼物,每个礼物都有一定的价值(价值大于 0)。你可以从棋盘的左上角开始拿格子里的礼物,并每次向右或者向

    2024年02月05日
    浏览(65)
  • 【C】动态规划 之 多维最大最小路径和

    总结一下这类题型的思路: 每一步所求的最优解 = 上一步的最优解 + 这一步的情况 主要思路: 1.到达每一个位置的 最大和 等于 前一步最大和 加上 这一位置的值, 而前一步要么是从左上下来,要么是从右上下来,这样就将原问题分解了 2.记得初始化dp数组,不然里面元素初

    2024年04月27日
    浏览(43)
  • 【动态规划】12简单多状态dp问题_打家劫舍II_C++ (medium)

    题目链接:leetcode打家劫舍II 目录 题目解析: 算法原理 1.状态表示 2.状态转移方程 3.初始化 4.填表顺序 5.返回值 编写代码 题目让我们求 在不触动警报装置的情况下  ,能够偷窃到的最高金额。 由题可得: 第一个房屋和最后一个房屋是紧挨着的 如果两间相邻的房屋在同一晚

    2024年02月02日
    浏览(48)
  • 动态规划|【路径问题】|931.下降路径最小和

    目录 题目 题目解析 思路 1.状态表示 2.状态转移方程 3.初始化 4.填表顺序 5.返回值 代码 931. 下降路径最小和 给你一个  n x n  的  方形  整数数组  matrix  ,请你找出并返回通过  matrix  的 下降路径   的   最小和  。 下降路径  可以从第一行中的任何元素开始,并从每一

    2024年04月13日
    浏览(44)
  • C++--动态规划路径问题

    1.不同路径 力扣 一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。 机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish”)。 现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径

    2024年02月15日
    浏览(43)
  • 动态规划-路径问题

    题目描述: 状态表示: 设dp[i][j]表示到达(i,j)位置时的路径数目。 状态转移方程: dp[i][j]=dp[i-1][j]+dp[i][j-1]。这里分析起来很简单,因为这算是很经典的问题了。机器人只能向下或者向右走,所以到达(i,j)就有两种方式,分别是从(i-1,j)向下以及(i,j-1)向右,那么到达(i,j)位置的

    2024年04月17日
    浏览(36)
  • 【动态规划】路径问题

    冻龟算法系列之路径问题 本文为动态规划的第二章:路径问题,重点讲解关于路径有关的问题,上一篇文章是一维的,那么路径问题就是二维的,通过题目可见需要创建二维的dp表,而以下将通过“解题”的方式去学习动归知识! 创建什么样的dp表,其实看题目就可以看出来

    2024年02月09日
    浏览(40)
  • 动态规划之路径问题

    1.题目链接:不同路径 2.题目描述: 一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。 机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。 问总共有多少条不同的路径? 3.问题分析: 对于 动态

    2024年02月11日
    浏览(51)
  • 动态规划——路径问题

    目录 什么是路径问题? 练习 练习1:不同路径  练习2:不同路径II 练习3:珠宝的最高价值 练习4:下降路径最小和 练习5:地下城游戏 动态规划中的路径问题: 指在一个给定的网格中,从起点到终点有多条可能的路径,每条路径都有一个特定的权重或成本,动态规划路径问

    2024年04月27日
    浏览(47)
  • 【动态规划专栏】专题二:路径问题--------1.不同路径

    本专栏内容为:算法学习专栏,分为优选算法专栏,贪心算法专栏,动态规划专栏以及递归,搜索与回溯算法专栏四部分。 通过本专栏的深入学习,你可以了解并掌握算法。 💓博主csdn个人主页:小小unicorn ⏩专栏分类:动态规划专栏 🚚代码仓库:小小unicorn的代码仓库🚚

    2024年02月20日
    浏览(46)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包