k8s二进制部署--部署高可用

这篇具有很好参考价值的文章主要介绍了k8s二进制部署--部署高可用。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

连接上文

k8s二进制部署--部署高可用,kubernetes,容器,云原生

notready是因为没有网络,因此无法创建pod

 k8s的CNI网络插件模式

1.pod内部,容器与容器之间的通信。

在同一个pod中的容器共享资源和网络,使用同一个网络命名空间。

2.同一个node节点之内,不同pod之间的通信。

每个pod都有一个全局的真实IP地址,同一个node之间的不同pod可以直接使用对方pod的ip地址进行通信。

pod1和pod2是通过docker0的网桥来进行通信。

3.不同node节点的pod如何通信。

Pod 地址与 docker0 在同一网段,docker0 网段与宿主机网卡是两个不同的网段,且不同 Node 之间的通信只能通过宿主机的物理网卡进行。

要想实现不同 Node 上 Pod 之间的通信,就必须想办法通过主机的物理网卡 IP 地址进行寻址和通信。因此要满足两个条件:Pod 的 IP 不能冲突;将 Pod 的 IP 和所在的 Node 的 IP 关联起来,通过这个关联让不同 Node 上 Pod 之间直接通过内网 IP 地址通信。
 

cni插件

cni是一个标准接口,用于容器运行时调用网络插件,配置容器网络,复制设置容器的网络命名空间,IP地址,路由等参数

flannel:

功能就是让集群之中不同节点的docker容器具有全集群唯一的虚拟IP地址。

overlay网络

在底层物理网络的基础之上,创建一个逻辑的网络层。二层+三层的集合 二层是物理网络,三层是逻辑上的网络层

overlay网络也是一种网络虚拟化的技术。

flannel支持的数据转发方式:

1.UDP模式(flannel1.0):

默认模式,应用转发配置简单,但是性能最差。

基于应用层,用户态

工作流程图:

k8s二进制部署--部署高可用,kubernetes,容器,云原生

2.vxlan(flannel1.1):

基于内核转发,也是最常用的网络类型(小集群都是用这个)

k8s二进制部署--部署高可用,kubernetes,容器,云原生

根据vni来解析IP地址

3.host-gw(性能最好,但是配置麻烦)

Calico网络插件

flannel:每个发向容器的数据包进行封装,vxlan通过vtep打包数据,由内核封装数据包----》再转发到目标node节点。还有一个解封装的过程。再发送到目标pod。性能是有一定影响的。

Calico:采用直接路由的方式。BGP路由。不需要修改报文,同意直接通过路由表转发,路由表会相当复杂,运行维护的要求比较高。

BGP模式的特点:交换路由信息的外部网关协议,可以连接不同的节点。node节点可能不是一个网段,BGP实现可靠的,最佳的,动态的路由选择。自动识别相邻的路由设备

calico 不使用 overlay,也不需要交换,直接通过虚拟路由实现,每一台虚拟路由都通过BGP转发。

核心组件:

felix:也是运行在主机上的一个个pod,一个进程,k8s daemonset的方式部署pod.

daemont set 会在每个节点部署相同的Pod,后台的运行方式。

负责宿主机上插入路由规则,维护calico需要的网络设备。网络接口管理,监听,路由等等。

BGP Client:bird BGP的客户端,专门负责在集群中分发路由规则的信息。每一个节点都会有一个BGP Client。

BGP协议广播方式通知其他节点的,分发路由的规则。实现网络互通。

etcd:保存路由信息,负责网络元数据的一致性。保证网络状态的一致和准确。

calico的工作原理(路由转发):

路由表来维护每个pod之间的通信。

创建好pod之后,添加一个设备cali veth pair设备。

虚拟网卡: veth pair是一对设备,虚拟的以太网设备。

一头连接在容器的网络命名空间

另一头连接宿主机的网络命名空间 cali

ip地址分配: veth pair连接容器的部分给容器分配一个IP地址,这个IP地址是唯一标识,宿主机也会被veth pair分配一个calico网络的内部IP地址。和其他节点上的容器进行通信。

veth设备:容器发出的IP通过veth pair设备到宿主机,宿主机根据路由规则的下一跳地址,发送到网关(目标宿主机)。数据包到达目标宿主机,veth pair设备,目标宿主机也是根据路由规则,下一跳地址,转发到目标容器。

ipip模式:会生成一个tunnel,数据包都在tunnel内部打包。封装:宿主机ip 容器内部的IP

k8s二进制部署--部署高可用,kubernetes,容器,云原生

常用的有flannel和calico

flannel的特点:配置简单,功能简单,基于overlay叠加网络实现,在物理层的网络层上再封装一个网络层

vxlan:是虚拟三层网络。最多的模式。vni+ip进行转发,flannel提供路由表,内核来封装和解封装。

host-gw():

由于封装和解封装的过程,对数据传输的性能会有影响。没有网络策略配置的能力。

udp:是默认模式

calico:功能强大,基于路由表进行转发,没有封装和解封装的过程。具备网络策略的配置能力。但是路由表维护起来复杂。

模式:ipip BGP

BGP:通过为ip路由表的前缀来实现目标主机的可达性。对比ipip模式,BGP模式没有隧道,BGP模式下,POD的数据包直接通过网卡发送到目的地。

ipip的隧道:隧道进行数据包的封装 ipv4----ipv4.

简单的小集群:flannel

扩容,配置网络策略:calico

部署coreDNS

//在所有 node 节点上操作
#上传 coredns.tar 到 /opt 目录中
cd /opt
docker load -i coredns.tar

//在 master01 节点上操作
#上传 coredns.yaml 文件到 /opt/k8s 目录中,部署 CoreDNS 
cd /opt/k8s
kubectl apply -f coredns.yaml

kubectl get pods -n kube-system 
NAME                          READY   STA
TUS    RESTARTS   AGE
coredns-5ffbfd976d-j6shb      1/1     Running   0          32s

#DNS 解析测试

kubectl create clusterrolebinding cluster-system-anonymous --clusterrole=cluster-admin --user=system:anonymous


kubectl run -it --rm dns-test --image=busybox:1.28.4 sh
If you don't see a command prompt, try pressing enter.
/ # nslookup kubernetes
Server:    10.0.0.2
Address 1: 10.0.0.2 kube-dns.kube-system.svc.cluster.local

Name:      kubernetes
Address 1: 10.0.0.1 kubernetes.default.svc.cluster.local

exit


---------- master02 节点部署 ----------
//从 master01 节点上拷贝证书文件、各master组件的配置文件和服务管理文件到 master02 节点
scp -r /opt/etcd/ root@20.0.0.62:/opt/
scp -r /opt/kubernetes/ root@20.0.0.62:/opt
scp -r /root/.kube root@20.0.0.62:/root
scp /usr/lib/systemd/system/{kube-apiserver,kube-controller-manager,kube-scheduler}.service root@20.0.0.62:/usr/lib/systemd/system/

//修改配置文件kube-apiserver中的IP
vim /opt/kubernetes/cfg/kube-apiserver
KUBE_APISERVER_OPTS="--logtostderr=true \
--v=4 \
--etcd-servers=https://192.168.233.91:2379,https://192.168.233.93:2379,https://192.168.233.94:2379 \
--bind-address=192.168.233.92 \				#修改
--secure-port=6443 \
--advertise-address=192.168.233.92 \			#修改
......

//在 master02 节点上启动各服务并设置开机自启
systemctl start kube-apiserver.service
systemctl enable kube-apiserver.service
systemctl start kube-controller-manager.service
systemctl enable kube-controller-manager.service
systemctl start kube-scheduler.service
systemctl enable kube-scheduler.service

//查看node节点状态
ln -s /opt/kubernetes/bin/* /usr/local/bin/
kubectl get nodes
kubectl get nodes -o wide			#-o=wide:输出额外信息;对于Pod,将输出Pod所在的Node名

//此时在master02节点查到的node节点状态仅是从etcd查询到的信息,
而此时node节点实际上并未与master02节点建立通信连接,因此需要使用一个VIP把node节点与master节点都关联起来

部署flannel

//在 node01 节点上操作
#上传 cni-plugins-linux-amd64-v0.8.6.tgz 和 flannel.tar 到 /opt 目录中
cd /opt/
docker load -i flannel.tar

mkdir -p /opt/cni/bin
tar zxvf cni-plugins-linux-amd64-v0.8.6.tgz -C /opt/cni/bin

//在 master01 节点上操作
#上传 kube-flannel.yml 文件到 /opt/k8s 目录中,部署 CNI 网络
cd /opt/k8s
kubectl apply -f kube-flannel.yml 

kubectl get pods -n kube-system
NAME                    READY   STATUS    RESTARTS   AGE
kube-flannel-ds-hjtc7   1/1     Running   0          7s

kubectl get nodes
NAME            STATUS   ROLES    AGE   VERSION
192.168.80.11   Ready    <none>   81m   v1.20.11

部署负载均衡

---------- master02 节点部署 ----------
//从 master01 节点上拷贝证书文件、各master组件的配置文件和服务管理文件到 master02 节点
scp -r /opt/etcd/ root@20.0.0.62:/opt/
scp -r /opt/kubernetes/ root@20.0.0.62:/opt
scp -r /root/.kube root@20.0.0.62:/root
scp /usr/lib/systemd/system/{kube-apiserver,kube-controller-manager,kube-scheduler}.service root@20.0.0.62:/usr/lib/systemd/system/

//修改配置文件kube-apiserver中的IP
vim /opt/kubernetes/cfg/kube-apiserver
KUBE_APISERVER_OPTS="--logtostderr=true \
--v=4 \
--etcd-servers=https://192.168.233.91:2379,https://192.168.233.93:2379,https://192.168.233.94:2379 \
--bind-address=192.168.233.92 \				#修改
--secure-port=6443 \
--advertise-address=192.168.233.92 \			#修改
......

//在 master02 节点上启动各服务并设置开机自启
systemctl start kube-apiserver.service
systemctl enable kube-apiserver.service
systemctl start kube-controller-manager.service
systemctl enable kube-controller-manager.service
systemctl start kube-scheduler.service
systemctl enable kube-scheduler.service

//查看node节点状态
ln -s /opt/kubernetes/bin/* /usr/local/bin/
kubectl get nodes
kubectl get nodes -o wide			#-o=wide:输出额外信息;对于Pod,将输出Pod所在的Node名

//此时在master02节点查到的node节点状态仅是从etcd查询到的信息,
而此时node节点实际上并未与master02节点建立通信连接,因此需要使用一个VIP把node节点与master节点都关联起来



------------------------------ 负载均衡部署 ------------------------------
//配置load balancer集群双机热备负载均衡(nginx实现负载均衡,keepalived实现双机热备)
##### 在lb01、lb02节点上操作 ##### 
//配置nginx的官方在线yum源,配置本地nginx的yum源
cat > /etc/yum.repos.d/nginx.repo << 'EOF'
[nginx]
name=nginx repo
baseurl=http://nginx.org/packages/centos/7/$basearch/
gpgcheck=0
EOF

yum install nginx -y

//修改nginx配置文件,配置四层反向代理负载均衡,指定k8s群集2台master的节点ip和6443端口
vim /etc/nginx/nginx.conf
events {
    worker_connections  1024;
}

#添加
stream {
    log_format  main  '$remote_addr $upstream_addr - [$time_local] $status $upstream_bytes_sent';
#日志记录格式	
#$remote_addr: 客户端的 IP 地址。
#$upstream_addr: 上游服务器的地址。
#[$time_local]: 访问时间,使用本地时间。
#$status: HTTP 响应状态码。
#$upstream_bytes_sent: 从上游服务器发送到客户端的字节数。
    
	access_log  /var/log/nginx/k8s-access.log  main;

    upstream k8s-apiserver {
        server 20.0.0.61:6443;
        server 20.0.0.62:6443;
    }
    server {
        listen 6443;
        proxy_pass k8s-apiserver;
    }
}

http {
......


//检查配置文件语法
nginx -t   

//启动nginx服务,查看已监听6443端口
systemctl start nginx
systemctl enable nginx
netstat -natp | grep nginx 


//部署keepalived服务
yum install keepalived -y

//修改keepalived配置文件
vim /etc/keepalived/keepalived.conf
! Configuration File for keepalived

global_defs {
   # 接收邮件地址
   notification_email {
     acassen@firewall.loc
     failover@firewall.loc
     sysadmin@firewall.loc
   }
   # 邮件发送地址
   notification_email_from Alexandre.Cassen@firewall.loc
   smtp_server 127.0.0.1
   smtp_connect_timeout 30
   router_id NGINX_MASTER	#lb01节点的为 NGINX_MASTER,lb02节点的为 NGINX_BACKUP
   #vrrp_strict  #注释掉
}

#添加一个周期性执行的脚本
vrrp_script check_nginx {
    script "/etc/nginx/check_nginx.sh"	#指定检查nginx存活的脚本路径
}

vrrp_instance VI_1 {
    state MASTER			#lb01节点的为 MASTER,lb02节点的为 BACKUP
    interface ens33			#指定网卡名称 ens33
    virtual_router_id 51	#指定vrid,两个节点要一致
    priority 100			#lb01节点的为 100,lb02节点的为 90
    advert_int 1
    authentication {
        auth_type PASS
        auth_pass 1111
    }
    virtual_ipaddress {
        192.168.233.100/24	#指定 VIP
    }
    track_script {
        check_nginx			#指定vrrp_script配置的脚本
    }
}


//创建nginx状态检查脚本 
vim /etc/nginx/check_nginx.sh

#!/bin/bash                                                        
/usr/bin/curl -I http://localhost &>/dev/null    
if [ $? -ne 0 ];then                                            
#    /etc/init.d/keepalived stop
    systemctl stop keepalived
fi 


chmod +x /etc/nginx/check_nginx.sh

//启动keepalived服务(一定要先启动了nginx服务,再启动keepalived服务)
systemctl start keepalived
systemctl enable keepalived
ip a				#查看VIP是否生成

//修改node节点上的bootstrap.kubeconfig,kubelet.kubeconfig配置文件为VIP
cd /opt/kubernetes/cfg/
vim bootstrap.kubeconfig 
server: https://192.168.233.100:6443
                      
vim kubelet.kubeconfig
server: https://192.168.233.100:6443
                        
vim kube-proxy.kubeconfig
server: https://192.168.233.100:6443

//重启kubelet和kube-proxy服务
systemctl restart kubelet.service 
systemctl restart kube-proxy.service

//在 lb01 上查看 nginx 和 node 、 master 节点的连接状态
netstat -natp | grep nginx
tcp        0      0 0.0.0.0:6443            0.0.0.0:*               LISTEN      44904/nginx: master 
tcp        0      0 0.0.0.0:80              0.0.0.0:*               LISTEN      44904/nginx: master 
tcp        0      0 192.168.80.100:6443     192.168.80.12:46954     ESTABLISHED 44905/nginx: worker 
tcp        0      0 192.168.80.14:45074     192.168.80.10:6443      ESTABLISHED 44905/nginx: worker 
tcp        0      0 192.168.80.14:53308     192.168.80.20:6443      ESTABLISHED 44905/nginx: worker 
tcp        0      0 192.168.80.14:53316     192.168.80.20:6443      ESTABLISHED 44905/nginx: worker 
tcp        0      0 192.168.80.100:6443     192.168.80.11:48784     ESTABLISHED 44905/nginx: worker 
tcp        0      0 192.168.80.14:45070     192.168.80.10:6443      ESTABLISHED 44905/nginx: worker 
tcp        0      0 192.168.80.100:6443     192.168.80.11:48794     ESTABLISHED 44905/nginx: worker 
tcp        0      0 192.168.80.100:6443     192.168.80.12:46968     ESTABLISHED 44905/nginx: worker 


##### 在 master01 节点上操作 ##### 
//测试创建pod
kubectl run nginx --image=nginx

//查看Pod的状态信息
kubectl get pods
NAME                    READY   STATUS              RESTARTS   AGE
nginx-dbddb74b8-nf9sk   0/1     ContainerCreating   0          33s   #正在创建中

kubectl get pods
NAME                    READY   STATUS    RESTARTS   AGE
nginx-dbddb74b8-nf9sk   1/1     Running   0          80s  			#创建完成,运行中

kubectl get pods -o wide
NAME                    READY   STATUS    RESTARTS   AGE   IP            NODE            NOMINATED NODE
nginx-dbddb74b8-26r9l   1/1     Running   0          10m   172.17.36.2   192.168.80.15   <none>
//READY为1/1,表示这个Pod中有1个容器

//在对应网段的node节点上操作,可以直接使用浏览器或者curl命令访问
curl 172.17.36.2

kubectl exec -it nginx bash

//这时在master01节点上查看nginx日志
kubectl logs nginx-dbddb74b8-nf9sk

 部署 Dashboard

------------------------------ 部署 Dashboard ------------------------------
//在 master01 节点上操作
#上传 recommended.yaml 文件到 /opt/k8s 目录中
cd /opt/k8s
vim recommended.yaml
#默认Dashboard只能集群内部访问,修改Service为NodePort类型,暴露到外部:
kind: Service
apiVersion: v1
metadata:
  labels:
    k8s-app: kubernetes-dashboard
  name: kubernetes-dashboard
  namespace: kubernetes-dashboard
spec:
  ports:
    - port: 443
      targetPort: 8443
      nodePort: 30001     #添加
  type: NodePort          #添加
  selector:
    k8s-app: kubernetes-dashboard

kubectl apply -f recommended.yaml

#创建service account并绑定默认cluster-admin管理员集群角色
kubectl create serviceaccount dashboard-admin -n kube-system

kubectl create clusterrolebinding dashboard-admin --clusterrole=cluster-admin --serviceaccount=kube-system:dashboard-admin


#获取token值
kubectl describe secrets -n kube-system $(kubectl -n kube-system get secret | awk '/dashboard-admin/{print $1}')

#使用输出的token登录Dashboard
https://20.0.0.63:30001

k8s二进制部署--部署高可用,kubernetes,容器,云原生

k8s二进制部署--部署高可用,kubernetes,容器,云原生文章来源地址https://www.toymoban.com/news/detail-776250.html

到了这里,关于k8s二进制部署--部署高可用的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【云原生】二进制k8s集群(下)部署高可用master节点

     在上一篇文章中,就已经完成了二进制k8s集群部署的搭建,但是单机master并不适用于企业的实际运用(因为单机master中,仅仅只有一台master作为节点服务器的调度指挥,一旦宕机。就意味着整个集群的瘫痪,所以成熟的k8s的集群一定要考虑到master的高可用。)企业的运用一

    2024年02月12日
    浏览(45)
  • k8s1.23.15版本二进制部署/扩容及高可用架构详解

    前言     众所周知,kubernetes在2020年的1.20版本时就提出要移除docker。这次官方消息表明在1.24版本中彻底移除了dockershim,即移除docker。但是在1.24之前的版本中还是可以正常使用docker的。考虑到可能并不是所有项目环境都紧跟新版换掉了docker,本次就再最后体验一下可支持

    2024年01月16日
    浏览(39)
  • 二进制部署高可用k8s集群V1.20.11版本

    单master架构图 master节点 node1节点 node2节点   Etcd是一个分布式键值存储系统, K8s使用Etcd进行数据存储 ,所以先准备一个Etcd数据库,为解决Etcd单点故障,应采用集群方式进行部署,这里使用3台组件集群,可容忍1台机器故障,当然 也可以使用5台组件集群,可容忍2台机器故

    2024年01月22日
    浏览(33)
  • 云原生Kubernetes:二进制部署K8S单Master架构(一)

    目录 一、理论 1.K8S单Master架构 2.  etcd 集群 3.CNI 4.Flannel网络 5.K8S单Master架构环境部署 6.部署 etcd 集群 7.部署 docker 引擎 8.flannel网络配置 二、实验 1.二进制部署K8S单Master架构 2. 环境部署 3.部署 etcd 集群 4.部署 docker 引擎 5.flannel网络配置 三、问题 1.etcd 报错 2.安装etcd问题 3.系

    2024年02月10日
    浏览(34)
  • 云原生Kubernetes:二进制部署K8S单Master架构(二)

    目录  一、理论 1.K8S单Master架构 2.部署 master 组件 3.部署 Woker Node 组件 4.在master1节点上操作 5.在 node01 节点上操作 6.在 master01 节点上操作  7.在 node01 节点上操作 8.node02 节点部署(方法一) 二、实验 1.环境  2.部署 master 组件 3.部署 Woker Node 组件 4.在master1节点上操作 5.在 nod

    2024年02月10日
    浏览(26)
  • Kubernetes - CentOS7搭建k8s_v1.18集群高可用(kubeadm/二进制包部署方式)实测配置验证手册

    一、Kubernetes—k8s是什么 Kubernetes 这个名字源于希腊语,意为“舵手“或”飞行员\\\"。 Kubernetes,简称K8s,中间有8个字符用8代替缩写。 Google于2014年开源项目,为容器化应用提供集群和管理的开源工具,Kubernetes目标是让部署容器化的应用简单并且高效,提供了应用部署,规划,更

    2024年04月27日
    浏览(32)
  • 【云原生】K8S二进制搭建三:高可用配置

    在所有 node 节点上操作 在 master01 节点上操作 初始化环境 初始化环境看这里 在 master01 节点上测试 仪表板是基于Web的Kubernetes用户界面。您可以使用仪表板将容器化应用程序部署到Kubernetes集群,对容器化应用程序进行故障排除,并管理集群本身及其伴随资源。您可以使用仪表

    2024年02月14日
    浏览(32)
  • 二进制安装Kubernetes(k8s)v1.29.2

    https://github.com/cby-chen/Kubernetes 开源不易,帮忙点个star,谢谢了 kubernetes(k8s)二进制高可用安装部署,支持IPv4+IPv6双栈。 我使用IPV6的目的是在公网进行访问,所以我配置了IPV6静态地址。 若您没有IPV6环境,或者不想使用IPv6,不对主机进行配置IPv6地址即可。 不配置IPV6,不影

    2024年02月19日
    浏览(44)
  • 二进制安装Kubernetes(k8s)v1.28.3

    https://github.com/cby-chen/Kubernetes 开源不易,帮忙点个star,谢谢了 kubernetes(k8s)二进制高可用安装部署,支持IPv4+IPv6双栈。 我使用IPV6的目的是在公网进行访问,所以我配置了IPV6静态地址。 若您没有IPV6环境,或者不想使用IPv6,不对主机进行配置IPv6地址即可。 不配置IPV6,不影

    2024年02月05日
    浏览(47)
  • ​二进制安装Kubernetes(k8s)v1.28.0

    https://github.com/cby-chen/Kubernetes 开源不易,帮忙点个star,谢谢了 kubernetes(k8s)二进制高可用安装部署,支持IPv4+IPv6双栈。 我使用IPV6的目的是在公网进行访问,所以我配置了IPV6静态地址。 若您没有IPV6环境,或者不想使用IPv6,不对主机进行配置IPv6地址即可。 不配置IPV6,不影

    2024年02月05日
    浏览(37)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包