聊聊流式数据湖Paimon(二)

这篇具有很好参考价值的文章主要介绍了聊聊流式数据湖Paimon(二)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

当前的问题

Apache Paimon 最典型的场景是解决了 CDC (Change Data Capture) 数据的入湖;CDC 数据来自数据库。一般来说,分析需求是不会直接查询数据库的。

  1. 容易对业务造成影响,一般分析需求会查询全表,这可能导致数据库负载过高,影响业务
  2. 分析性能不太好,业务数据库一般不是列存,查询部分列 Projection 性能太差
  3. 没有 Immutable 的视图,离线数仓里面需要根据 Immutable 的一个分区来计算

所以需要通过 CDC 的方式同步数据库的数据到数据仓库或数据湖里。

CDC可以理解为是Changelog数据流。

目前典型的同步方式依然是 Hive 的全量与增量的离线合并同步方式。
聊聊流式数据湖Paimon(二)
在 Hive 数仓里维护两张表:增量分区表和全量分区表,通过:

  1. (按需) 初始化时使用 DataX 或 Sqoop 等工具同步整张数据库表到 Hive 全量表的分区中。
  2. 每天定时 (比如凌晨0点30分) 同步增量数据 (通过 Kafka) 到 Hive 增量分区表,形成一个增量分区 T。
  3. 将 增量分区 T 与 全量分区 T-1 进行合并,产出今天的 全量表 分区 T。

这个流程在今天也是主流的同步方式,离线数据提供一个 Immutable 的视图,让数据的可靠性大大增加。
但是它的问题不少:

  1. 架构链路复杂度高:由于链路复杂,每天产出全量分区容易有问题导致不能按时产出,新增业务也比较复杂,全量和增量割裂。
  2. 时延高:至少 T + 1 延时,而且需要等全量和增量合并完成。
  3. 存储成本高:每天全量表一个分区存储所有数据,意味着 100 天就需要 100 倍的存储成本。
  4. 计算成本高:每天需要读取全量数据,与增量数据进行全量合并,在增量数据不多时浪费严重。

引入Paimon

和其它数据湖不同的是,Paimon 是从流世界里面诞生的数据湖,所以它在对接流写流读、对接 Flink 方面都要比其它数据湖做得更好。
Flink 结合 Paimon 打造的入湖架构如下:
聊聊流式数据湖Paimon(二)
步骤如下:

  1. 通过 Flink CDC 一键全增量一体入湖到 Paimon,此任务可以配置 Tag 的自动创建,然后通过 Paimon 的能力,将 Tag 映射为 Hive 的分区,完全兼容原有 Hive SQL 的用法。

只需一步。

Paimon 的每一次写都会生成一个 Immutable 的快照,快照可以被 Time Travel 的读取,但是快照会有过期被删除的问题,因此要解决此问题,可以基于快照创建 Tag;Tag 就是快照集合,通过Tag提供离线历史数据的访问。

流式入湖方式可以有如下多种方式:

  1. Flink SQL 入湖,SQL 处理,可以有函数等 Streaming SQL 的处理
  2. Paimon 一键 Schema Evolution 入湖,好处是 Schema 也会同步到下游 Paimon 表里:详见 https://paimon.apache.org/docs/master/cdc-ingestion/overview/

它的好处是:

  1. 架构链路复杂度低,不再因为各种组件的问题导致链路延时,你只用运维这一个流作业,而且可以完全兼容原有 Hive SQL 用法。
  2. 时延低:延时取决于流作业的 Checkpoint Interval,数据最低1分钟实时可见 (建议1-5分钟)。不但如此,Paimon 也提供了流读的能力,让你完成分钟级的 Streaming 计算,也可以写到下游别的存储。
  3. 存储成本低:得益于湖格式的 Snapshot 管理,加上 LSM 的文件复用,比如同样是存储 100天的快照,原有 Hive 数仓 100 天需要 100 份的存储,Paimon 在某些增量数据不多的场景只需要 2 份的存储,大幅节省存储资源。
  4. 计算成本低:得益于 LSM 的增量合并能力,此条链路只有增量数据的处理,没有全量的合并。可能有用户会担心,常驻的流作业会消耗更多的资源,对 Paimon 来说,你可以打开纯异步 Compaction 的机制,以 Paimon 优异的性能表现,只用少量的资源即可完成同步,Paimon 另有整库同步等能力帮助你节省资源。

参考

Flink + Paimon 数据 CDC 入湖最佳实践
Apache Paimon 实时数据湖 Streaming Lakehouse 的存储底座文章来源地址https://www.toymoban.com/news/detail-776373.html

到了这里,关于聊聊流式数据湖Paimon(二)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 流数据湖平台Apache Paimon(三)Flink进阶使用

    2.9.1 写入性能 Paimon的写入性能与检查点密切相关,因此需要更大的写入吞吐量: 增加检查点间隔,或者仅使用批处理模式。 增加写入缓冲区大小。 启用写缓冲区溢出。 如果您使用固定存储桶模式,请重新调整存储桶数量。 2.9.1.1 并行度 建议sink的并行度小于等于bucket的数量

    2024年02月09日
    浏览(34)
  • 流数据湖平台Apache Paimon(四)集成 Hive 引擎

    前面与Flink集成时,通过使用 paimon Hive Catalog,可以从 Flink 创建、删除、查询和插入到 paimon 表中。这些操作直接影响相应的Hive元存储。以这种方式创建的表也可以直接从 Hive 访问。 更进一步的与 Hive 集成,可以使用 Hive SQL创建、查询Paimon表。 Paimon 目前支持 Hive 3.1、2.3、2

    2024年02月14日
    浏览(59)
  • 流数据湖平台Apache Paimon(二)集成 Flink 引擎

    Paimon目前支持Flink 1.17, 1.16, 1.15 和 1.14。本课程使用Flink 1.17.0。 环境准备 2.1.1 安装 Flink 1)上传并解压Flink安装包 tar -zxvf flink-1.17.0-bin-scala_2.12.tgz -C /opt/module/ 2)配置环境变量 2.1.2 上传 jar 包 1)下载并上传Paimon的jar包 jar包下载地址:https://repository.apache.org/snapshots/org/apache/pa

    2024年02月09日
    浏览(47)
  • 新一代数据湖存储技术Apache Paimon入门Demo

    目录 前言 1. 什么是 Apache Paimon 一、本地环境快速上手 1、本地Flink伪集群 2、IDEA中跑Paimon Demo 2.1 代码 2.2 IDEA中成功运行 3、IDEA中Stream读写 3.1 流写 3.2 流读(toChangeLogStream) 二、进阶:本地(IDEA)多流拼接测试 要解决的问题: note: 1、\\\'changelog-producer\\\' = \\\'full-compaction\\\' (1)m

    2024年02月08日
    浏览(51)
  • 基于 Flink SQL 和 Paimon 构建流式湖仓新方案

    目录 1. 数据分析架构演进 2. Apache Paimon 3. Flink + Paimon 流式湖仓 Consumer 机制 Changelog 生成​编辑

    2024年02月04日
    浏览(36)
  • Apache Paimon 文件管理

    管理小文件 许多用户关注小文件问题,可能导致以下情况: 稳定性问题:HDFS 中如果存在太多小文件的话会导致 NameNode 压力过大 成本问题:在 HDFS 中,每个小文件都会占用至少一个数据块的大小,例如 128 MB 查询效率:查询过多小文件会影响查询效率 理解 Checkpoint 假设你正

    2024年02月21日
    浏览(43)
  • Apache Paimon 使用之文件系统配置

    1)概述 Paimon 和 Flink 一样使用了插件式的 file systems,如果使用Flink引擎,用户可以根据 plugin 机制配置 plugin 结构。 然而,对于 Spark 引擎 和 Hive 引擎,它们提供的 Jars 可能与 Flink 提供的产生冲突,不能直接使用,因此 Paimon 自己也提供了FileSystem插件,供用户从Spark或Hive端查

    2024年03月12日
    浏览(53)
  • Apache Paimon使用之 Altering Tables

    1.改变或增加表属性 设置表属性 write-buffer-size 为 256 MB 。 Flink 引擎 Spark3引擎 2.重命名表 Flink引擎 Spark3引擎 最简单的sql调用是 可以以这种方式重命名paimon表 不能将Catalog名称放在重命名的表之前,会报错: 注意 :如果使用对象存储,如S3或OSS,请谨慎使用此语法,因为对象

    2024年03月12日
    浏览(37)
  • 【Apache-Flink零基础入门】「入门到精通系列」手把手+零基础带你玩转大数据流式处理引擎Flink(基础概念解析+有状态的流式处理)

    Apache Flink 是业界公认的最佳流计算引擎之一,它不仅仅局限于流处理,而是一套兼具流、批、机器学习等多种计算功能的大数据引擎。Flink 的用户只需根据业务逻辑开发一套代码,就能够处理全量数据、增量数据和实时数据,无需针对不同的数据类型开发不同的方案。这使得

    2024年02月03日
    浏览(89)
  • Apache Kafka - 流式处理

    Kafka被广泛认为是一种强大的消息总线,可以可靠地传递事件流,是流式处理系统的理想数据来源。 流式处理系统通常是指一种处理实时数据流的计算系统,能够对数据进行实时的处理和分析,并根据需要进行相应的响应和操作 。与传统的批处理系统不同,流式处理系统能够

    2024年02月10日
    浏览(50)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包