前言
此篇主要总结到Hive,Flink,Spark出现数据倾斜的表现,原因和解决办法。首先会让大家认识到不同框架或者计算引擎处理倾斜的方案。最后你会发现计算框架只是“异曲”,文末总结才是“同工之妙”。点击收藏与分享,工作和涨薪用得到!!!
数据倾斜
数据倾斜最笼统概念就是数据的分布不平衡,有些地方数据多,有些地方数据少。在计算过程中有些地方数据早早地处理完了,有些地方数据迟迟没有处理完成,造成整个处理流程迟迟没有结束,这就是最直接数据倾斜的表现。
Hive
Hive数据倾斜表现
就是单说hive自身的MR引擎:发现所有的map task全部完成,并且99%的reduce task完成,只剩下一个或者少数几个reduce task一直在执行,这种情况下一般都是发生了数据倾斜。说白了就是Hive的数据倾斜本质上是MapReduce的数据倾斜。
Hive数据倾斜的原因
在MapReduce编程模型中十分常见,大量相同的key被分配到一个reduce里,造成一个reduce任务累死,其他reduce任务闲死。查看任务进度,发现长时间停留在99%或100%,查看任务监控界面,只有少量的reduce子任务未完成。
-
key分布不均衡。文章来源:https://www.toymoban.com/news/detail-776462.html
-
业务问题或者业务数据本身的问题,某些数据比较集中。文章来源地址https://www.toymoban.com/news/detail-776462.html
到了这里,关于万字解决Flink|Spark|Hive 数据倾斜的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!