万字解决Flink|Spark|Hive 数据倾斜

这篇具有很好参考价值的文章主要介绍了万字解决Flink|Spark|Hive 数据倾斜。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

前言

此篇主要总结到Hive,Flink,Spark出现数据倾斜的表现,原因和解决办法。首先会让大家认识到不同框架或者计算引擎处理倾斜的方案。最后你会发现计算框架只是“异曲”,文末总结才是“同工之妙”。点击收藏与分享,工作和涨薪用得到!!!

数据倾斜

数据倾斜最笼统概念就是数据的分布不平衡,有些地方数据多,有些地方数据少。在计算过程中有些地方数据早早地处理完了,有些地方数据迟迟没有处理完成,造成整个处理流程迟迟没有结束,这就是最直接数据倾斜的表现。

Hive

万字解决Flink|Spark|Hive 数据倾斜,大数据企业级开发,大数据,大数据,flink,spark,面试

Hive数据倾斜表现

就是单说hive自身的MR引擎:发现所有的map task全部完成,并且99%的reduce task完成,只剩下一个或者少数几个reduce task一直在执行,这种情况下一般都是发生了数据倾斜。说白了就是Hive的数据倾斜本质上是MapReduce的数据倾斜。

Hive数据倾斜的原因

在MapReduce编程模型中十分常见,大量相同的key被分配到一个reduce里,造成一个reduce任务累死,其他reduce任务闲死。查看任务进度,发现长时间停留在99%或100%,查看任务监控界面,只有少量的reduce子任务未完成。

  1. key分布不均衡。

  2. 业务问题或者业务数据本身的问题,某些数据比较集中。文章来源地址https://www.toymoban.com/news/detail-776462.html

到了这里,关于万字解决Flink|Spark|Hive 数据倾斜的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 企业级大数据安全架构(十)DBeaver连接Hive的Kerberos认证配置

    1.配置本地hosts 因为Kerberos认证过程及集群服务中,很多是以主机名的形式进行访问的,所以工作机要设置hosts. 域名映射,我们通过部署CDH的集群的每一台机器都已经配置了host(文件为/etc/hosts),工作机也需要配置window的host文件,如果提示无法修改,一般是需要管理员权限的原

    2024年02月21日
    浏览(43)
  • flink sql 实战实例 及延伸问题:聚合/数据倾斜/DAU/Hive流批一体 等

    ⭐ 需求:上游是一个 kafka 数据源,数据内容是用户 QQ 等级变化明细数据(time,uid,level)。需要你求出当前每个等级的用户数。 ⭐ 需求:数据源:用户心跳日志(uid,time,type)。计算分 Android,iOS 的 DAU,最晚一分钟输出一次当日零点累计到当前的结果。 经过测试 在fl

    2024年02月22日
    浏览(49)
  • Spark数据倾斜及解决方法

    数据倾斜是指少量的Task运行大量的数据,可能会导致OOM。数据过量是所有的Task都很慢。避免数据倾斜的方式主要有: 按照Key分组后,一组数据拼接成一个字符串,这样一个Key只有一条数据了。这个方式个人觉得有点僵硬。 增大或缩小Key的粒度:增大粒度一个Key包含更多的数

    2024年02月15日
    浏览(34)
  • Spark数据倾斜场景及解决思路

    绝大多数 task 执行得都非常快,但个别 task 执行极慢。 在进行 shuffle 的时候,必须将各个节点上相同的 key 拉取到某个节点上的一个 task 来进行处理,比如按照 key 进行聚合或 join 等操 作。此时如果某个 key 对应的数据量特别大的话,就会发生数据倾斜。 因此出现数据倾斜的

    2023年04月24日
    浏览(35)
  • Spark数据倾斜问题分析和解决

    一、背景 首先需要掌握 Spark DAG、stage、task的相关概念 Spark的job、stage和task的机制论述 - 知乎 task数量和rdd 分区数相关 running task数=executor-core* num-executors (如果running task 没有达到乘积最大,一般是队列资源不足) https://www.cnblogs.com/muyue123/p/14036648.html 二、任务慢的原因分析 找到

    2024年02月03日
    浏览(75)
  • Spark数据倾斜解决方案一:源数据预处理和过滤倾斜key

    为什么把源数据预处理和过滤掉倾斜的key两种处理倾斜的方式写到一起? 因为这两种方式在实际的项目中场景较少而且单一,对于数据源预处理,比如原本要在spark中进行聚合或join的操作,提前到hive中去做,这种方式虽然解决了spark中数据倾斜的问题,但是hive中依然也会存

    2024年02月09日
    浏览(41)
  • (15)Hive调优——数据倾斜的解决指南

    目录 前言 一、什么是数据倾斜 二、发生数据倾斜的表现 2.1 MapReduce任务 2.2 Spark任务 三、如何定位发生数据倾斜的代码 四、发生数据倾斜的原因 3.1 key分布不均匀 3.1.1 某些key存在大量相同值 3.1.2 存在大量异常值或空值 3.2 业务数据本身的特性 3.3 SQL语句本身就有数据倾斜

    2024年04月14日
    浏览(44)
  • 如何解决Flink任务的数据倾斜

    如何解决flink任务的数据倾斜问题 Flink 任务的数据倾斜问题可以通过以下几种方法来解决: 使用滑动窗口:滑动窗口可以将窗口划分成多个子窗口,从而使数据更加均衡地分配到不同的计算节点中。同时,滑动窗口还可以使窗口内的数据更加连续,从而减少数据倾斜的情况。

    2024年02月14日
    浏览(41)
  • Spark重温笔记(二):快如闪电的大数据计算框架——你真的了解SparkCore的 RDD 吗?(包含企业级搜狗案例和网站点击案例)

    前言:今天是温习 Spark 的第 2 天啦!主要梳理了 Spark 核心数据结构:RDD(弹性分布式数据集),其中包括基于内存计算的 SparkCore 各类技术知识点希望对大家有帮助! Tips:\\\"分享是快乐的源泉💧,在我的博客里,不仅有知识的海洋🌊,还有满满的正能量加持💪,快来和我一起

    2024年03月25日
    浏览(38)
  • Hive数据倾斜的原因以及常用解决方案

    在Hadoop平台的hive数据库进行开发的时候,数据倾斜也是比较容易遇到的问题,这边文章对数据倾斜的定义以及产生的原因、对应的解决方案进行学习。 数据倾斜:数据分布不均匀,造成数据大量的集中到一点,造成数据热点。主要表现为任务进度长时间维持在 99%或者 100%的

    2024年02月15日
    浏览(49)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包