mac m1芯片 pytorch安装及gpu性能测试

这篇具有很好参考价值的文章主要介绍了mac m1芯片 pytorch安装及gpu性能测试。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

pytorch 使用mac的m1芯片进行模型训练。

#小结:在数据量小模型参数少batch_size小时,cpu训练更快(原因:每次训练时数据需要放入GPU中,由于batch_size小。数据放入gpu比模型计算时间还长)
数据量大(或者batch size大)或者模型参数多时,使用GPU训练优势明显
当模型参数大于100w时,使用GPU比CPU开始有优势
注意mac gpu device是 mps ,不是cudn. device= torch.device(“mps”)

1 pytorch 安装及gpu验证

1.1 安装

mac需要安装 night 版本的pytorch
mac安装官网地址

conda install pytorch torchvision torchaudio -c pytorch-nightly
# 或者
pip3 install --pre torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/nightly/cpu

1.2 gpu验证

主要是执行:torch.backends.mps.is_available()
以下代码输出: tensor([1.], device=‘mps:0’)

import torch
if torch.backends.mps.is_available():
    mps_device = torch.device("mps")
    x = torch.ones(1, device=mps_device)
    print (x)
else:
    print ("MPS device not found.")

2 mac m1芯片验证

实验1 :batch_size=32, 模型参数 parameter_num=476,720
  gpu 运行时长: 1min 36s
  cpu 运行时长: 37.5s
实验2 :batch_size=512, 模型参数 parameter_num=476,720
  gpu 运行时长: 16s
  cpu 运行时长: 13.3s
实验3 :batch_size=1024, 模型参数 parameter_num=476,720
  gpu 运行时长: 12.7s
  cpu 运行时长: 12.4s
实验4 :batch_size=1024, 模型参数 parameter_num=6,904,128
  gpu 运行时长: 13.9s
  cpu 运行时长: 23.8s
实验5 :batch_size=1024, 模型参数 parameter_num=23,685,440
  gpu 运行时长: 20.5s
  cpu 运行时长: 53.5s
实验6 :batch_size=1024, 模型参数 parameter_num=203,618,624
  gpu 运行时长: 4min 11s
  cpu 运行时长: 6min 49s

附录

测试代码

import torch
from torch.utils.data import DataLoader
from torchvision import datasets,transforms
from  torch import nn,optim
batch_size=1024
mnist_train=datasets.MNIST("mnist",True,transform=transforms.Compose([
    transforms.ToTensor()    ]),download=True)
mnist_train=DataLoader(mnist_train,batch_size=batch_size,shuffle=True)
minst_test=datasets.MNIST("mnist",False,transform=transforms.Compose([
    transforms.ToTensor()  ]),download=True)
minst_test=DataLoader(minst_test,batch_size=batch_size,shuffle=True)
x,lable=next(iter(mnist_train))
print(lable)
x.shape

device=torch.device("mps")
autoencoder=AE().to(device)
critenon=nn.MSELoss()
optimizer=optim.Adam(autoencoder.parameters(),lr=1e-4)

autoencoder2=AE()
critenon2=nn.MSELoss()
optimizer2=optim.Adam(autoencoder2.parameters(),lr=1e-4)

# GPU 训练
#%%time
for epoch in range(5):
    for index,(x,_) in enumerate(mnist_train):
        x=x.to(device)
        x_hat=autoencoder(x)
        loss=critenon(x_hat,x)
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
    print(epoch,"loss: ",loss.item())
    
# CPU训练
# %%time
for epoch in range(5):
    for index,(x,_) in enumerate(mnist_train):
        x=x
        x_hat=autoencoder2(x)
        loss=critenon2(x_hat,x)
        optimizer2.zero_grad()
        loss.backward()
        optimizer2.step()
    print(epoch,"loss: ",loss.item())

total_params = sum(p.numel() for p in autoencoder2.parameters())
print("Total Parameters: {:,}".format(total_params))

实验1
mac m1芯片 pytorch安装及gpu性能测试,pytorch,macos,pytorch,人工智能,mac

实验3
mac m1芯片 pytorch安装及gpu性能测试,pytorch,macos,pytorch,人工智能,mac

实验4

mac m1芯片 pytorch安装及gpu性能测试,pytorch,macos,pytorch,人工智能,mac文章来源地址https://www.toymoban.com/news/detail-776659.html

到了这里,关于mac m1芯片 pytorch安装及gpu性能测试的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • mac m1芯片如何使用gpu

    2022年5月,PyTorch官方宣布已正式支持在M1芯片版本的Mac上进行模型加速。官方对比数据显示,和CPU相比,M1上炼丹速度平均可加速7倍。 因为 Mac M1芯片不是一个单纯的一个CPU芯片,而是包括了CPU(中央处理器),GPU(图形处理器),NPU(神经网络引擎),以及统一内存单元等众多组件的

    2024年02月10日
    浏览(53)
  • 【MacOS】MacBook使用本机m1芯片GPU训练的方法(mps替代cuda)

    记录: 对于tensorflow环境配置,即使替换了M1适配的anaconda,使用苹果官方适配m1的tensorflow安装命令,仍旧出现各种问题,可见现在的M1版anaconda还是存在很大问题。所以在屡次不服气的碰壁下我还是改用了miniforge3…真香! so,建议使用miniforge3管理,miniforge3可以理解成 minicon

    2024年02月05日
    浏览(42)
  • Mac Apple Silicon M1/M2 homebrew miniforge conda pytorch yolov5深度学习环境搭建并简单测试MPS GPU加速

    笔者使用的是一台M2版本的Macbook Air,虽然苹果作为深度学习的训练机不太合适,但是由于macbook作为打字机实在是无可挑剔,所以使用macbook调试一下pytorch的代码再放到集群上训练或者直接在mac上调试运行代码都是不错的体验,本文以在mac上直接调试yolov5为目标,大概记录一下

    2024年02月02日
    浏览(52)
  • 提升 5-7 倍速,使用 Mac M1 芯片加速 Pytorch 完全指南

    2022年5月,PyTorch官方宣布已正式支持在M1芯片版本的Mac上进行模型加速。官方对比数据显示,和CPU相比,M1上炼丹速度平均可加速7倍。 哇哦,不用单独配个GPU也能加速这么多,我迫不及待地搞到一个M1芯片的MacBook后试水了一番,并把我认为相关重要的信息梳理成了本文。 Qu

    2023年04月23日
    浏览(68)
  • MacOS M1芯片安装PyQt5的方法

    PyQt5 是GUI 小部件工具包,是 Qt 的 Python 接口,是图形界面开发库,用于程序的用户交互界面 按照官网 PyQt5-pypi 的教程,推荐使用pip的方法进行安装。 但安装过程中会一直卡在准备元数据的过程,等待1小时左右仍没有变化,原本以为是 Python 版本的问题,最后发现是 M1 Mac上的

    2024年02月07日
    浏览(48)
  • 在M1芯片MacOS中IDEA开发工具安装,超详细

    此处说明了两种安装IDEA的方法 方法一:在官网下载正版授权(比较贵),然后安装就可以了,大概步骤如下: 方法二:相应的专业版下载(我是穷逼买不起正版) 第一步:在官网下载idea安装包(为了顺利使用推荐下载IDEA2022.3.2版本) 由于点开IDEA官网之后默认推荐的是最新

    2024年02月10日
    浏览(61)
  • Mac M1芯片安装es,kibana

    安装:brew search elasticsearch    //查看版本 brew install elastic/tap/ elasticsearch-full  //安装这个full版本 。。。等待安装 启动:cd /opt/homebrew/bin           ./elasticsearch 访问: http://localhost:9200/ 安装:brew search kibana    //查看版本 brew install elastic/tap/kibana-full //安装这个full版本 。。。

    2024年02月05日
    浏览(77)
  • 关于macOS系统M1芯片安装node-sass报错的解决方案

    最近更换macOS系统,pull项目后安装依赖时报错: 参考 M1芯片 安装node-sass报错 这篇文章后 ,得知原因是: node与node-sass版本不匹配 。代码的node-sass是v4.14.1版本(需要node15以下的版本),而我的node 是 v14(但M1芯片仅兼容node v15.3.0 以上,因为低版本的 node 并不是基于 arm64 架构

    2023年04月26日
    浏览(57)
  • 支持Mac M1芯片的安卓模拟器安装

    首先需要说明,市场上的模拟器都是安卓,没有 IOS 模拟器,因为 IOS 系统不开源,安卓系统开源 安卓模拟器支持 M1 的,貌似目前 mumu 和夜神这两大主流的安卓模拟器还不支持 M1,目前只有谷歌官方提供的可以用 仓库地址:https://github.com/google/android-emulator-m1-preview 去其中资产

    2024年02月11日
    浏览(52)
  • mac的m1芯片安装nvm踩坑完全版

    我是按照知乎大神的方法安装的,过程中仍然有坑 首先: 知乎大神的方法安装 踩坑开始: 使用zsh brew一直装不了(原因未知) .zshrc文件无法创建 mkdir .zshrc 创建成了名为.zshrc 的文件夹而不是文件,这时候启用vi vi .zshrc(vi + 文件名称,如果不存在这个文件,就新建文件,存

    2024年02月09日
    浏览(42)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包