⛄一、帝企鹅算法及栅格地图简介
1 帝企鹅算法
帝企鹅优化(Emperor Penguin Optimizer,EPO)算法是Dhiman G和Kumar V于2018年提出的一种新型群智能算法,该算法具有参数少、收敛精度高等特点。帝企鹅从事各种活动,如狩猎、群体觅食,是群居性动物。每当恶劣的气候来临,它们会挤在一起防风御寒。帝企鹅在南极极端冬季期间主要以集群的方式互相取暖来度过−40℃的冬季。为了保证每只企鹅都能取暖,因此每只企鹅都在平等地做出贡献,同时它们的社交行为极为团结以及分工明确。集群的行为可归纳如下。
帝企鹅是所有企鹅中体型最大的一类,生活在宽阔的冰面上,在冬季进行繁殖。帝企鹅是一种群居型动物,在繁殖季节会成群结队地上岸。这使得帝企鹅在冬季恶劣的环境下会聚集在一起避寒取暖。在帝企鹅聚集过程中有一个重要特征,即群体中间的每只企鹅都有可能成为群体中温度最高点。根据帝企鹅群体这一生活习性,帝企鹅优化算法可设计为以下四个步骤:
第一,产生并确定帝企鹅群体的聚集边界;
第二,计算帝企鹅群体聚集时的温度分布;
第三,确定帝企鹅个体之间的距离,这将有助于平衡算法的探索和开发能力;
第四,随着帝企鹅群体的移动,重新确定聚集边界,并计算聚集时的温度分布,确定温度最高的帝企鹅位置。
2 栅格地图
2.1 栅格法应用背景
路径规划时首先要获取环境信息, 建立环境地图, 合理的环境表示有利于建立规划方法和选择合适的搜索算法,最终实现较少的时间开销而规划出较为满意的路径。一般使用栅格法在静态环境下建立环境地图。
2.2 栅格法实质
将AGV的工作环境进行单元分割, 将其用大小相等的方块表示出来,这样栅格大小的选取是影响规划算法性能的一个很重要的因素。栅格较小的话,由栅格地图所表示的环境信息将会非常清晰,但由于需要存储较多的信息,会增大存储开销,同时干扰信号也会随之增加,规划速度会相应降低,实时性得不到保证;反之,由于信息存储量少,抗干扰能力有所增强,规划速随之增快,但环境信息划分会变得较为模糊,不利于有效路径的规划。在描述环境信息时障碍物所在区域在栅格地图中呈现为黑色,地图矩阵中标为1,可自由通行区域在栅格地图中呈现为白色,地图矩阵中标为0。路径规划的目的就是在建立好的环境地图中找到一条最优的可通行路径,所以使用栅格法建立环境地图时,栅格大小的合理设定非常关键。
2.3 10乘10的静态环境地图
10乘10的静态环境地图代码
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%建立环境地图%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function DrawMap(map)
n = size(map);
step = 1;
a = 0 : step :n(1);
b = 0 : step :n(2);
figure(1)
axis([0 n(2) 0 n(1)]); %设置地图横纵尺寸
set(gca,'xtick',b,'ytick',a,'GridLineStyle','-',...
'xGrid','on','yGrid','on');
hold on
r = 1;
for(i=1:n(1)) %设置障碍物的左下角点的x,y坐标
for(j=1:n(2))
if(map(i,j)==1)
p(r,1)=j-1;
p(r,2)=i-1;
fill([p(r,1) p(r,1) + step p(r,1) + step p(r,1)],...
[p(r,2) p(r,2) p(r,2) + step p(r,2) + step ],'k');
r=r+1;
hold on
end
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%栅格数字标识%%%%%%%%%%%%%%%%%%%%%%%%%%%%
x_text = 1:1:n(1)*n(2); %产生所需数值.
for i = 1:1:n(1)*n(2)
[row,col] = ind2sub([n(2),n(1)],i);
text(row-0.9,col-0.5,num2str(x_text(i)),'FontSize',8,'Color','0.7 0.7 0.7');
end
hold on
axis square
建立环境矩阵,1代表黑色栅格,0代表白色栅格,调用以上程序,即可得到上述环境地图。
map=[0 0 0 1 0 0 1 0 0 0;
1 0 0 0 0 1 1 0 0 0;
0 0 1 0 0 0 1 1 0 0;
0 0 0 0 0 0 0 0 0 0;
0 0 0 0 0 1 0 0 1 0;
1 0 0 0 0 1 1 0 0 0;
0 0 0 1 0 0 0 0 0 0;
1 1 1 0 0 0 1 0 0 0;
0 0 0 0 0 1 1 0 0 0;
0 0 0 0 0 1 1 0 0 0;];
DrawMap(map); %得到环境地图
2.4 栅格地图中障碍栅格处路径约束
移动体栅格环境中多采用八方向的移动方式,此移动方式在完全可通行区域不存在运行安全问题,当
移动体周围存在障碍栅格时此移动方式可能会发生与障碍物栅格的碰撞问题,为解决此问题加入约束
条件,当在分别与障碍物栅格水平方向和垂直方向的可行栅格两栅格之间通行时,禁止移动体采用对
角式移动方式。
约束条件的加入,实质是改变栅格地图的邻接矩阵,将障碍栅格(数字为“1”的矩阵元素)的对角栅格
设为不可达, 即将对角栅格的距离值改为无穷大。其实现MATLAB代码如下:
代码:
%约束移动体在障碍栅格对角运动
%通过优化邻接矩阵实现
%%%%%%%%%%%%%%%%%% 约束移动体移动方式 %%%%%%%%%%%%%%%%%
function W=OPW(map,W)
% map 地图矩阵 % W 邻接矩阵
n = size(map);
num = n(1)*n(2);
for(j=1:n(1))
for(z=1:n(2))
if(map(j,z)==1)
if(j==1) %若障碍物在第一行
if(z==1) %若障碍物为第一行的第一个
W(j+1,j+n(2)*j)=Inf;
W(j+n(2)*j,j+1)=Inf;
else
if(z==n(2)) %若障碍物为第一行的最后一个
W(n(2)-1,n(2)+n(1)*j)=Inf;
W(n(2)+n(1)*j,n(2)-1)=Inf;
else %若障碍物为第一行的其他
W(z-1,z+j*n(2))=Inf;
W(z+j*n(2),z-1)=Inf;
W(z+1,z+j*n(2))=Inf;
W(z+j*n(2),z+1)=Inf;
end
end
end
if(j==n(1)) %若障碍物在最后一行
if(z==1) %若障碍物为最后一行的第一个
W(z+n(2)*(j-2),z+n(2)*(j-1)+1)=Inf;
W(z+n(2)*(j-1)+1,z+n(2)*(j-2))=Inf;
else
if(z==n(2)) %若障碍物为最后一行的最后一个
W(n(1)*n(2)-1,(n(1)-1)*n(2))=Inf;
W((n(1)-1)*n(2),n(1)*n(2)-1)=Inf;
else %若障碍物为最后一行的其他
W((j-2)*n(2)+z,(j-1)*n(2)+z-1)=Inf;
W((j-1)*n(2)+z-1,(j-2)*n(2)+z)=Inf;
W((j-2)*n(2)+z,(j-1)*n(2)+z+1)=Inf;
W((j-1)*n(2)+z+1,(j-2)*n(2)+z)=Inf;
end
end
end
if(z==1)
if(j~=1&&j~=n(1)) %若障碍物在第一列非边缘位置
W(z+(j-2)*n(2),z+1+(j-1)*n(2))=Inf;
W(z+1+(j-1)*n(2),z+(j-2)*n(2))=Inf;
W(z+1+(j-1)*n(2),z+j*n(2))=Inf;
W(z+j*n(2),z+1+(j-1)*n(2))=Inf;
end
end
if(z==n(2))
if(j~=1&&j~=n(1)) %若障碍物在最后一列非边缘位置
W((j+1)*n(2),j*n(2)-1)=Inf;
W(j*n(2)-1,(j+1)*n(2))=Inf;
W(j*n(2)-1,(j-1)*n(2))=Inf;
W((j-1)*n(2),j*n(2)-1)=Inf;
end
end
if(j~=1&&j~=n(1)&&z~=1&&z~=n(2)) %若障碍物在非边缘位置
W(z+(j-1)*n(2)-1,z+j*n(2))=Inf;
W(z+j*n(2),z+(j-1)*n(2)-1)=Inf;
W(z+j*n(2),z+(j-1)*n(2)+1)=Inf;
W(z+(j-1)*n(2)+1,z+j*n(2))=Inf;
W(z+(j-1)*n(2)-1,z+(j-2)*n(2))=Inf;
W(z+(j-2)*n(2),z+(j-1)*n(2)-1)=Inf;
W(z+(j-2)*n(2),z+(j-1)*n(2)+1)=Inf;
W(z+(j-1)*n(2)+1,z+(j-2)*n(2))=Inf;
end
end
end
end
end
2.5 栅格法案例
下面以Djkstra算法为例, 其实现如下:
map=[0 0 0 1 0 0 1 0 0 0;
1 0 0 0 0 1 1 0 0 0;
0 0 1 0 0 0 1 1 0 0;
0 0 0 0 0 0 0 0 0 0;
0 0 0 0 0 1 0 0 1 0;
1 0 0 0 0 1 1 0 0 0;
0 0 0 1 0 0 0 0 0 0;
1 1 1 0 0 0 1 0 0 0;
0 0 0 0 0 1 1 0 0 0;
0 0 0 0 0 1 1 0 0 0;];
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%建立环境矩阵map%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
DrawMap(map); %得到环境地图
W=G2D(map); %得到环境地图的邻接矩阵
W(W==0)=Inf; %邻接矩阵数值处理
W=OPW(map,W); %优化邻接矩阵
[distance,path]=dijkstra(W,1,100);%设置起始栅格,得到最短路径距离以及栅格路径
[x,y]=Get_xy(distance,path,map); %得到栅格相应的x,y坐标
Plot(distance,x,y); %画出路径
运行结果如下:
其中函数程序:
DrawMap(map) 详见建立栅格地图
W=G2D(map) ; 详见建立邻接矩阵
[distance, path] =dijkstra(W, 1, 100) 详见Djk stra算法
[x, y] =Get_xy(distance, path, map) ;
Plot(distance, x, y) ;
⛄二、部分源代码
clc
clear
close all
tic
%% 地图
G=[0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;
0 1 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0;
0 1 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0;
0 1 1 1 0 0 1 1 1 0 1 1 1 1 0 0 0 0 0 0;
0 1 1 1 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0;
0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0;
0 0 0 0 1 1 0 1 1 0 1 1 1 1 0 0 0 0 0 0;
0 0 0 0 1 0 0 1 1 0 1 1 1 1 0 0 0 0 0 0;
0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 0;
0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 0;
1 1 1 1 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 0;
1 1 1 1 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 1 1 0 1 1 1 0 0 0 0 0 1 1 0;
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0;
0 0 1 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0;
0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0;];
for i=1:20/2
for j=1:20
m=G(i,j);
n=G(21-i,j);
G(i,j)=n;
G(21-i,j)=m;
end
end
%%
S = [1 1];
E = [20 20];
G0 = G;
G = G0(S(1):E(1),S(2):E(2));
[Xmax,dimensions] = size(G);
dimensions = dimensions - 2;
X_min = 1;
%% 参数设置
max_gen = 200; % 最大迭代次数
num_polution = 50; % 种群数量
fboj=@(x)fitness(x,G,X_min,Xmax);
⛄三、运行结果
⛄四、matlab版本及参考文献
1 matlab版本
2014a
2 参考文献
[1]陈云霁,范道生,刘新宇. “基于正弦余弦算法的自主导航机器人路径规划研究.” 自动化学报,2012年,38(8): 1465-1474.
[2]陈云霁,范道生,刘新宇. “基于正弦余弦算法的机器人路径规划实验研究.” 科技通报,2011年,27(11): 68-71.
[3]张银红,杨琳. “基于正弦余弦算法的栅格地图机器人路径规划研究.” 计算机技术与发展,2012年,22(7): 12-15.
[4]刘江波,吴天一. 《栅格地图机器人路径规划算法及其应用》. 清华大学出版社,2016年.文章来源:https://www.toymoban.com/news/detail-776762.html
3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除文章来源地址https://www.toymoban.com/news/detail-776762.html
到了这里,关于【路径规划】基于matlab帝企鹅算法栅格地图机器人最短路径规划【含Matlab源码 3630期】的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!