【动态规划】C++算法312 戳气球

这篇具有很好参考价值的文章主要介绍了【动态规划】C++算法312 戳气球。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

作者推荐

视频算法专题

本文涉及知识点

动态规划汇总

LeetCode312 戳气球

有 n 个气球,编号为0 到 n - 1,每个气球上都标有一个数字,这些数字存在数组 nums 中。
现在要求你戳破所有的气球。戳破第 i 个气球,你可以获得 nums[i - 1] * nums[i] * nums[i + 1] 枚硬币。 这里的 i - 1 和 i + 1 代表和 i 相邻的两个气球的序号。如果 i - 1或 i + 1 超出了数组的边界,那么就当它是一个数字为 1 的气球。
求所能获得硬币的最大数量。
示例 1:
输入:nums = [3,1,5,8]
输出:167
解释:
nums = [3,1,5,8] --> [3,5,8] --> [3,8] --> [8] --> []
coins = 315 + 358 + 138 + 181 = 167
示例 2:
输入:nums = [1,5]
输出:10
参数范围

n == nums.length
1 <= n <= 300
0 <= nums[i] <= 100

动态规划

nums前后各加一个1,设增加两个1后,nums的长度为m_c。则问题转化为nums[0,m_c-1] ,消除掉nums(0,m_c-1),不消除nums[0]和nums[m_c-1]的最大得分。我们用函数f(0,m_c-1)表示。我们枚举最后消除的元素k,则f(i,j)=f(i,k)+nums[i]*nums[k]*nums[j]+f(k,j)。
k的取值范围(i,j)

共有mn种状态,故空间复杂度是O(nm),每种状态的转移时间复杂度是O(1),故时间复杂度是O(nm)。m和n是t和s的长度。

动态规划的状态表示 dp[i][j]等于f(i,j)
动态规划的转移方程 f(i,j)=f(i,k)+nums[i]*nums[k]*nums[j]+f(k,j)
动态规划的初始状态 全部0
动态规划的填表顺序 len = j-i+1。len < 3 ,dp[i][j]=0,无需处理。第一层循环len从3到m_c,第二层循环i从小到大。由短到长处理子字符串,确保动态规划的无后效性
动态规划的返回值 dp[0].back()

空间复杂度: 子数组的起点和终点,各n种可能。故空间复杂度:O(nn)。
时间复杂度: 状态nn种,每种状态的转移时间复杂度O(n),故总时间复杂度O(n3)。

代码

核心代码

class Solution {
public:
	int maxCoins(vector<int>& nums) {
		nums.insert(nums.begin(), 1);
		nums.emplace_back(1);
		m_c = nums.size();
		vector<vector<int>> dp(m_c, vector<int>(m_c));
		for (int len = 3; len <= m_c; len++)
		{
			int j;
			for (int i = 0; (j = i+len-1) < m_c; i++)
			{			
				for (int k = i + 1; k < j; k++)
				{
					dp[i][j] = max(dp[i][j], dp[i][k] + nums[i] * nums[k] * nums[j] + dp[k][j]);
				}
			}
		}
		return dp[0].back();
	}
	int m_c;
};

测试用例

template<class T>
void Assert(const T& t1, const T& t2)
{
	assert(t1 == t2);
}

template<class T>
void Assert(const vector<T>& v1, const vector<T>& v2)
{
	if (v1.size() != v2.size())
	{
		assert(false);
		return;
	}
	for (int i = 0; i < v1.size(); i++)
	{
		Assert(v1[i], v2[i]);
	}
}


int main()
{
	vector<int> nums;
	{
		Solution sln;
		nums = { 3, 1, 5, 8 };
		auto res = sln.maxCoins(nums);
		Assert(167, res);
	}
	{
		Solution sln;
		nums = { 1,5 };
		auto res = sln.maxCoins(nums);
		Assert(10, res);
	}
	
}

2023年一月版

class Solution {
public:
int maxCoins(vector& nums) {
int iMax = 0;
m_c = nums.size();
vector<vector> dp;
dp.assign(m_c+1, vector(m_c));
for (int len = 1; len <= m_c; len++)
{
for (int c = 0; c + len - 1 < m_c; c++)
{
//计算dp[len][c]
//m是最后的气球,这样保证可以拆分两个子项
for (int m = c; m <= c + len - 1; m++)
{
int iSource = GetSource(nums, m,c-1,c+len);
if (m > c)
{
iSource += dp[m - c][c];
}
if (m < c + len - 1)
{
iSource += dp[c + len - 1 - m][m + 1];
}
dp[len][c] = max(dp[len][c], iSource);
}
}
}
return dp[m_c][0];
}
int GetSource(const vector& nums,int c,int iLeft,int iRight)
{
int iScource = nums[c];
if (iLeft >= 0)
{
iScource *= nums[iLeft];
}
if (iRight < m_c)
{
iScource *= nums[iRight];
}
return iScource;
}
int m_c;
};

2023年6月版

class Solution {
public:
int maxCoins(vector& nums) {
nums.insert(nums.begin(), 1);
nums.emplace_back(1);
m_c = nums.size();
//dp[len][iBegin]表示iBegin开始长度为len的区间,消除得剩余首尾2个元素获得的积分
vector<vector> dp(m_c + 1, vector(m_c, 0));
for (int len = 3; len <= m_c; len++)
{
for (int begin = 0; begin + len - 1 < m_c; begin++)
{
const int end = begin + len - 1;
for (int mid = begin + 1; mid < end; mid++)
{
const int leftLen = mid - begin + 1;
const int rightLen = len - leftLen + 1;
const int iNew = dp[leftLen][begin] + nums[begin] * nums[mid] * nums[end] + dp[rightLen][mid];
dp[len][begin] = max(dp[len][begin], iNew);
}
}
}
return dp.back()[0];
}
int m_c;
};

【动态规划】C++算法312 戳气球,# 算法题,数据结构与算法,算法,动态规划,c++,leetcode,气球,最大数量,硬币

扩展阅读

视频课程

有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771

如何你想快

速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176

相关下载

想高屋建瓴的学习算法,请下载《喜缺全书算法册》doc版
https://download.csdn.net/download/he_zhidan/88348653

我想对大家说的话
闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。
如果程序是一条龙,那算法就是他的是睛

测试环境

操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17
如无特殊说明,本算法用**C++**实现。

【动态规划】C++算法312 戳气球,# 算法题,数据结构与算法,算法,动态规划,c++,leetcode,气球,最大数量,硬币文章来源地址https://www.toymoban.com/news/detail-776931.html

到了这里,关于【动态规划】C++算法312 戳气球的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 数据结构与算法 | 动态规划算法(Dynamic Programming)

    上一篇文末已经提到了记忆化搜索是动态规划(Dynamic Programming)的一种形式,是一种自顶向下(Top-Down)的思考方式,通常采用递归的编码形式;既然动态规划有自顶向下(Top-Down)的递归形式,自然想到对应的另外一种思考方式 自底向上( Bottom-Up ) ,也就是本篇要写的内

    2024年02月05日
    浏览(44)
  • Java数据结构与算法----动态规划(背包篇)

    1.1.算法思路 0/1背包是动态规划、背包问题中最经典的问题啦!它主要的问题是: 给定n种物品、这n种物品的重量分别是,价值分别是 ,而你有一个容量为C的背包,请问如何求出所能拿的最大价值呢? 对于动态规划,我们先需要找到一条推导公式,然后确定边界: 我们设

    2024年02月07日
    浏览(49)
  • 数据结构与算法:动态规划(Dynamic Programming)详解

    动态规划(Dynamic Programming,简称DP) 是一种在数学、管理科学、计算机科学、经济学和生物信息学等领域中使用的,通过把原问题分解为相对简单的子问题的方式求解复杂问题的方法。动态规划经常被用于求解优化问题。 动态规划的核心思想是将复杂问题分解为更小的子问

    2024年04月25日
    浏览(47)
  • python数据结构与算法-动态规划(最长公共子序列)

    一个序列的子序列是在该序列中删去若干元素后得 到的序列。 例如:\\\"ABCD”和“BDF”都是“ABCDEFG”的子序列。 最长公共子序列(LCS) 问题: 给定两个序列X和Y,求X和Y长度最大的公共子字列。 例:X=\\\"ABBCBDE”Y=\\\"DBBCDB”LCS(XY)=\\\"BBCD\\\" 应用场景:字符串相似度比对 (1)问题思考 思考: 暴

    2024年02月08日
    浏览(49)
  • 【夜深人静学数据结构与算法 | 第十篇】动态规划

    目录 前言: 动态规划: 常见应用: 解题步骤:  动态规划的简化步骤: 案例: 509. 斐波那契数 - 力扣(LeetCode) 70. 爬楼梯 - 力扣(LeetCode) 62. 不同路径 - 力扣(LeetCode) 总结:         本文我们将为大家讲解一下动态规划的理论知识,并且会讲解几道力扣的经典例题。

    2024年02月11日
    浏览(50)
  • 【数据结构与算法】Kadane‘s算法(动态规划、最大子数组和)

    Kadane\\\'s 算法是一种用于解决最大子数组和问题的动态规划算法。这类问题的目标是在给定整数数组中找到一个连续的子数组,使其元素之和最大(数组含有负数)。 算法的核心思想是通过迭代数组的每个元素,维护两个变量来跟踪局部最优解和全局最优解。 以下是Kadane’s算

    2024年03月22日
    浏览(99)
  • ​Python—数据结构与算法​---动态规划—DP算法(Dynamic Programing)

    目录 我们一路奋战, 不是为了改变世界, 而是为了不让世界改变我们。 动态规划——DP算法(Dynamic Programing) 一、🏔斐波那契数列(递归VS动态规划) 1、🐒斐波那契数列——递归实现(python语言)——自顶向下 2、🐒斐波那契数列——动态规划实现(python语言)——自底

    2024年02月10日
    浏览(38)
  • 【零基础】学python数据结构与算法笔记14-动态规划

    学习python数据结构与算法,学习常用的算法, b站学习链接 动态规划在基因测序、基因比对、hmm 有应用场景。 从斐波那契数列看动态规划 练习: 使用递归和非递归的方法来求解斐波那契数列。 这种非递归求斐波那契数,可以看成是一个动态规划思想,每次都会把重复子问

    2023年04月09日
    浏览(42)
  • 【数据结构与算法】三个经典案例带你了解动态规划

    从表中我们可以看到,最大的公共子串长度为2,一共有两个长度为2的公共子串,分别是第一个字符串的第2个字符到第3个字符和第一个字符串的第3个字符到第4个字符,即 ba 和 ac 根据上面的方法,我们来用代码封装一下求取最大公共子串的函数 function publicStr(s1, s2) { // 创建

    2024年04月09日
    浏览(92)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包