【OpenCV】在MacOS上使用OpenCvSharp

这篇具有很好参考价值的文章主要介绍了【OpenCV】在MacOS上使用OpenCvSharp。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

前言
  OpenCV是一个基于Apache2.0许可(开源)发行的跨平台计算机视觉和机器学习软件库,它具有C++,Python,Java和MATLAB接口,并支持Windows,Linux,Android和Mac OS。OpenCvSharp是一个OpenCV的 .Net wrapper,应用最新的OpenCV库开发,使用习惯比EmguCV更接近原始的OpenCV,该库采用LGPL发行,对商业应用友好。

1. 项目环境

  • 编码环境:Visual Studio Code
  • 程序框架:.NET 6.0

  目前在Mac OS上使用C#语言官方提供了编译Visual Studio for Mac,但是根据官方发布的通知后续将不再支持该软件更新,后续将全部转移到Visual Studio Code平台,所以在此处我们演示使用Visual Studio Code进行演示。而代码的运行与配置使用dotnet指令实现。

  关于Visual Studio Code以及.NET的安装方式可以参考一下官方教程:
在 macOS 上安装 .NET、Visual Studio Code on macOS。

2. 创建控制台项目

  此处使用dotnet指令创建新项目,在Visual Studio Code的终端中输入一下指令:

dotnet new console --framework net6.0 --use-program-main -o test_opencvsharp

  如下图所示,在终端中输入以下指令后,会自动创建新的项目以及项目文件夹。
【OpenCV】在MacOS上使用OpenCvSharp

  在创建好项目后,我们进行一下项目测试,依次输入以下指令,最后会得到输出:"Hello, World!":

test_opencvsharp
dotnet run

3. 添加 Nuget Package 程序包

  OpenCvSharp4是一个可以跨平台使用的程序包,并且官方也提供了编译好的程序包,用户可以根据自己的平台进行安装。在Mac OS上,主要需要安装一下两个包,分别是OpenCvSharp4的官方程序包以及OpenCvSharp4的运行依赖包。

dotnet add package OpenCvSharp4
dotnet add package OpenCvSharp4.runtime.osx_arm64 --prerelease

  安装完上面两个安装包后,项目的配置的文件中会增加下面两个配置。

<Project Sdk="Microsoft.NET.Sdk">

  <PropertyGroup>
    <OutputType>Exe</OutputType>
    <TargetFramework>net6.0</TargetFramework>
    <ImplicitUsings>enable</ImplicitUsings>
    <Nullable>enable</Nullable>
  </PropertyGroup>

  <ItemGroup>
    <PackageReference Include="OpenCvSharp4" Version="4.8.0.20230708" />
    <PackageReference Include="OpenCvSharp4.runtime.osx_arm64" Version="4.8.1-rc" />
  </ItemGroup>

</Project>

emsp; 接下来运行dotnet run,检验项目中是否包含所需要的配置文件:OpenCvSharp.dllruntimes/osx-arm64/native/。打开项目运行生成的文件夹bin/{build_config}/{dotnet_version}/,在本项目中是bin/Debug/net6.0/文件夹,如下图所示:

【OpenCV】在MacOS上使用OpenCvSharp

可以看出,在程序运行后,安装的程序包中所有项目都已经加载到当前项目中,如果出现缺失,就需要找到程序包位置,将该文件复制到指定路径。

3. 测试应用

  最后我们编写项目代码进行测试,如下面代码所示:

using System;
using OpenCvSharp;
namespace test_opencvsharp 
{
    internal class Program
    {
        static void Main(string[] args)
        {
            Mat image = Cv2.ImRead("image.jpg");
            Mat image2=new Mat();
            if (image!=null)
            {
                Console.WriteLine("srcImg is OK!");
            }
            Console.WriteLine("图像的宽度是:{0}",image.Rows);
            Console.WriteLine("图像的高度是:{0}", image.Cols);
            Console.WriteLine("图像的通道数是:{0}", image.Channels());
            Cv2.ImShow("src", image);
            Cv2.CvtColor(image, image2, ColorConversionCodes.RGB2GRAY);//转为灰度图像
            Cv2.ImShow("src1", image2);
            Cv2.WaitKey(0);
            Cv2.DestroyAllWindows();//销毁所有窗口
        }
    }
}

  项目代码运行后,最后呈现效果如下图所示:

【OpenCV】在MacOS上使用OpenCvSharp

4. 总结

  在本次项目中,我们成功实现了在Mac OS上使用OpenCvSharp,并成功配置了OpenCvSharp依赖库,实现了在.NET 6.0环境下使用C#语言调用OpenCvSharp库,实现的图片数据的读取以及图像色彩转换,并进行了图像展示。文章来源地址https://www.toymoban.com/news/detail-777111.html

到了这里,关于【OpenCV】在MacOS上使用OpenCvSharp的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • C#使用OpenCv(OpenCVSharp)图像处理实例:亮度、对比度、灰度

    本文实例演示C#语言中如何使用OpenCv(OpenCVSharp)对图像进行亮度、对比度、灰度处理。 目录 亮度和对比度原理 灰度 实例 图像亮度通俗理解便是图像的明暗程度,数字图像 f(x,y) = i(x,y) r(x, y) ,如果灰度值在[0,255]之间,则 f 值越接近0亮度越低,f 值越接近255亮度越

    2024年02月13日
    浏览(76)
  • C#使用OpenCv(OpenCVSharp)使用摄像头视频显示和录制及图片保存、本地视频显示

    本篇实例讲解基于OpenCvSharp实现了摄像头视频显示、录制及截图、视频保存,本地视频的显示功能。 目录 创建winform项目添加控件 NuGet安装opencvsharp  代码  运行效果 实例实现过程

    2024年02月15日
    浏览(48)
  • C# &OpenCV 从零开发(0):前言

    由于我想换个机器视觉+运动控制的工作,我就开始了自学机器视觉方向的技术。但是Halcon毕竟是商业化的库,国内用盗版还是怕被告。所以期望使用OpenCV。 OpenCV目前已知的方法的有两个版本 Python:用起来挺简单的,就是Python的语言不适合管理,感觉以后必定会出现问题,不适

    2024年01月18日
    浏览(61)
  • 【OpenCV】OpenCV (C++) 与 OpenCvSharp (C#) 之间数据通信

      OpenCV是一个基于Apache2.0许可(开源)发行的跨平台计算机视觉和机器学习软件库,可以运行在Linux、Windows、Android和Mac OS操作系统上。 它轻量级而且高效——由一系列 C 函数和少量 C++ 类构成,同时提供了Python、Ruby、MATLAB等语言的接口,实现了图像处理和计算机视觉方面的

    2024年03月27日
    浏览(44)
  • 《数字图像处理-OpenCV/Python》连载(1)前言

    本书京东优惠购书链接:https://item.jd.com/14098452.html 写作背景 编写本书的初衷,源自作者学习数字图像处理的经历。 在创新实验班开设的专业创新教育课程中,我选择的是数字图像处理方向。老师向我推荐的教材是冈萨雷斯的《数字图像处理》。学习的开始阶段非常困难。教

    2024年02月11日
    浏览(65)
  • OpenCv案例(十): 基于OpenCvSharp识别二维码

    1:二维码在工业和工作生活中应用广泛,下面基于OpenCvSharp识别图像中二维码; 2:函数:OpenCvSharp中, QRCodeDetector  有两个相关API分别实现二维码检测与二维码解析。           public string DetectAndDecode(InputArray img, out Point2f[] points, OutputArray straightQrcode = null); 其中:      

    2024年02月11日
    浏览(41)
  • OpenCV+OpenCvSharp实现图片特征向量提取与相似度计算

    图片特征向量是一种用于描述图片内容的数学表示,它可以反映图片的颜色、纹理、形状等信息。图片特征向量可以用于做很多事情,比如图片检索、分类、识别等。 本文将介绍图片特征向量的提取以及相似度的计算,并使用C#来实现它们。 文章开始前,我们先来简单了解一

    2024年02月08日
    浏览(41)
  • 学习Opencv(蝴蝶书/C++)——1. 前言 和 第1章.概述

    注,整体学习过程参考的内容: 从零学习 OpenCV4 2022年唐宇迪新全【OpenCV入门到实战】课程分享!原来学习OpenCV可以这么简单,超级通俗易懂!(附配套学习资料)-人工智能图像处理计算机视觉 《OpenCV轻松入门面向python》 细致理解 OpenCV opencv的全名:Open Source Computer Vision

    2024年02月03日
    浏览(52)
  • OpenCv案例(九): 基于OpenCvSharp图像分割提取目标区域和定位

    以下原图中,物体连靠在一起,目的是将其分割开,再提取轮廓和定位 原图:   最终效果: 麻烦的地方是,分割开右下角部分,两个连在一起的目标物体,下图所示:  基本方法:BoxFilter滤波、二值化、轮廓提取,凸包检测,图像的矩 代码如下: 灰度图像后图像二值化:

    2024年02月11日
    浏览(39)
  • C#基于OpenCv(OpenCvSharp) 的 fftshift, ifftshift 函数的实现

    本文实现基于 OpenCv ( OpenCvSharp ) 的 fftshift, ifftshift 函数。 fftshift 函数将信号频谱的零频分量移动到数组中心, 本质是分别对调一三象限数据。 ifftshift完成相反的操作,本质是二四象限的数据块。 OpenCV中没有这两个函数如果使用需要自己实现。 实现代码如下:

    2024年02月14日
    浏览(38)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包