主成分分析法(PCA)的理解(附python代码案例)

这篇具有很好参考价值的文章主要介绍了主成分分析法(PCA)的理解(附python代码案例)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

最近在文献调研,发现PCA基本都有用到,回忆起了机器学习和数学建模,总之还是要好好学学捏。
python pca分析,机器学习,数学建模,python,人工智能,算法,线性代数

一、PCA简介

定义:主成分分析(Principal Component Analysis, PCA)是一种统计方法。通过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量,转换后的这组变量叫主成分。

换一种说法:PCA去除噪声和不重要的特征,将多个指标转换为少数几个主成分,这些主成分是原始变量的线性组合,且彼此之间互不相关,其能反映出原始数据的大部分信息,而且可以提升数据处理的速度。

为什么会出现PCA呢?因为每个变量都在不同程度上反映了所研究问题的某些信息,并且指标之间彼此有一定的相关性,因而所得的统计数据反映的信息在一定程度上有重叠。在用统计方法研究多变量问题时,变量太多会增加计算量和分析问题的复杂性

核心思想降维,这个过程中可能会损失精度,但是能获取更高更关键的因素。


二、举个例子

例子1:评选三好学生,每个学生都有很多特征,比如学习成绩、社会实践、思想道德、体育成绩等。在评比中,有一些特征属于“ 无用特征 ”,比如身高、体重、头发长短等,这些特征在评比中是不会考虑的;而有一些特征属于“ 冗余特征 ”,比如各科成绩、总成绩、GPA,实际上这些有一个即可。

例子2:见下图。原本黑色坐标系中需要记录每个点的横纵坐标(xi, yi),也就是 2 个纬度的数据。

但如果转换坐标系,如绿色坐标系所示,让每个点都位于同一条轴上,这样每个点坐标为(xi’, 0),此时仅用x’坐标表示即可,即 1 个维度。

python pca分析,机器学习,数学建模,python,人工智能,算法,线性代数
在这个过程中,原先需要保存的 2 维数据变成了 1 维数据,叫做数据降维 / 数据提炼。而PCA的任务形象理解也就是坐标系的转换

PCA其实目的就是寻找这个转换后的坐标系,使数据能尽可能分布在一个或几个坐标轴上,同时尽可能保留原先数据分布的主要信息,使原先高维度的信息,在转换后能用低维度的信息来保存。而新坐标系的坐标轴,称为主成分(Principal components, PC),这也就是PCA的名称来源。


三、计算过程(公式)

3.0 题干假设

首先假设有 n 个样本,p 个特征, x i j x_{ij} xij 表示第i个样本的第 j 个特征,这些样本构成的 n × p 特征矩阵 X 为:
X = [ x 11 x 12 ⋯ x 1 p x 21 x 22 ⋯ x 2 p ⋮ ⋮ ⋱ ⋮ x n 1 x n 2 ⋯ x n p ] = [ x 1 , x 2 , ⋯   , x p ] X=\begin{bmatrix} x_{11} & x_{12} & \cdots & x_{1p} \\ x_{21} & x_{22} & \cdots & x_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & \cdots & x_{np} \\ \end{bmatrix} = [x_1,x_2,\cdots,x_p] X= x11x21xn1x12x22xn2x1px2pxnp =[x1,x2,,xp]

我们的目的是找到一个转换矩阵,将 p 个特征转化为 m 个特征(m < p),从而实现特征降维。即找到一组新的特征 / 变量 z 1 z_1 z1, z 2 z_2 z2, …, z m z_m zm(m ≤ p),满足以下式子:
{ z 1 = l 11 x 1 + l 12 x 2 + ⋯ + l 1 p x p z 2 = l 21 x 1 + l 22 x 2 + ⋯ + l 2 p x p ⋮ z m = l m 1 x 1 + l m 2 x 2 + ⋯ + l m p x p \begin{cases} \begin{aligned} z_1&=l_{11}x_1+l_{12}x_2+\dots+l_{1p}x_p \\ z_2&=l_{21}x_1+l_{22}x_2+\dots+l_{2p}x_p \\ \vdots \\ z_m&=l_{m1}x_1+l_{m2}x_2+\dots+l_{mp}x_p \end{aligned} \end{cases} z1z2zm=l11x1+l12x2++l1pxp=l21x1+l22x2++l2pxp=lm1x1+lm2x2++lmpxp

3.1 标准化

有的博客写的是去中心化而不是标准化,在计算过程中也仅体现出步骤的不同,实际两种方法都可以用的,大家也可以看看这篇博客看看这几种“化”的区别:数据归一化、标准化和去中心化。本篇只研究标准化,第四部分的参考链接中介绍了标准化和去中心化的步骤,写得很详细,欢迎大家学习~

标准化过程如下:

  1. 计算每个特征(共p个特征)的均值 x j ‾ \overline{x_j} xj 和标准差 S j S_j Sj,公式如下:
    x j ‾ = 1 n ∑ i = 1 n x i j \overline{x_j}=\frac{1}{n}\sum_{i=1}^nx_{ij} xj=n1i=1nxij
    S j = ∑ i = 1 n ( x i j − x j ‾ ) 2 n − 1 S_j=\sqrt{\frac{\sum_{i=1}^n(x_{ij}-\overline{x_j})^2}{n-1}} Sj=n1i=1n(xijxj)2

  2. 将每个样本的每个特征进行标准化处理,得到标准化特征矩阵 X s t a n d X_{stand} Xstand
    X i j = x i j − x j ‾ S j X_{ij}=\frac{x_{ij}-\overline{x_j}}{S_j} Xij=Sjxijxj
    X s t a n d = [ X 11 X 12 ⋯ X 1 p X 21 X 22 ⋯ X 2 p ⋮ ⋮ ⋱ ⋮ X n 1 X n 2 ⋯ X n p ] = [ X 1 , X 2 , ⋯   , X p ] X_{stand}=\begin{bmatrix} X_{11} & X_{12} & \cdots & X_{1p} \\ X_{21} & X_{22} & \cdots & X_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ X_{n1} & X_{n2} & \cdots & X_{np} \\ \end{bmatrix} = [X_1,X_2,\cdots,X_p] Xstand= X11X21Xn1X12X22Xn2X1pX2pXnp =[X1,X2,,Xp]

3.2 计算协方差矩阵

协方差矩阵是汇总了所有可能配对的变量间相关性的一个表。

协方差矩阵 R 为:
R = [ r 11 r 12 ⋯ r 1 p r 21 r 22 ⋯ r 2 p ⋮ ⋮ ⋱ ⋮ r p 1 r p 2 ⋯ r p p ] R=\begin{bmatrix} r_{11} & r_{12} & \cdots & r_{1p} \\ r_{21} & r_{22} & \cdots & r_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ r_{p1} & r_{p2} & \cdots & r_{pp} \\ \end{bmatrix} R= r11r21rp1r12r22rp2r1pr2prpp

r i j = 1 n − 1 ∑ k = 1 n ( X k i − X i ‾ ) ( X k j − X j ‾ ) = 1 n − 1 ∑ k = 1 n X k i X k j \begin{aligned} r_{ij}&=\frac{1}{n-1}\sum_{k=1}^n(X_{ki}-\overline{X_i})(X_{kj}-\overline{X_j})\\ &=\frac{1}{n-1}\sum_{k=1}^nX_{ki}X_{kj} \end{aligned} rij=n11k=1n(XkiXi)(XkjXj)=n11k=1nXkiXkj

3.3 计算特征值和特征值向量

计算矩阵R的特征值,并按照大小顺序排列,计算对应的特征向量,并进行标准化,使其长度为1。R是半正定矩阵,且 t r ( R ) = ∑ k = 1 p λ k = p tr(R) = \sum_{k=1}^p\lambda_k = p tr(R)=k=1pλk=p

特征值: λ 1 ≥ λ 2 ≥ ⋯ ≥ λ p ≥ 0 \lambda_1\ge\lambda_2\ge \dots \ge \lambda_p\ge0 λ1λ2λp0

特征向量: L 1 = [ l 11 , l 12 , … , l 1 p ] T … L p = [ l p 1 , l p 2 , … , l p p ] T L_1=[l_{11},l_{12},\dots ,l_{1p}]^T \dots L_p=[l_{p1},l_{p2},\dots ,l_{pp}]^T L1=[l11,l12,,l1p]TLp=[lp1,lp2,,lpp]T

3.3 多重共线性检验(可跳过)

若存在明显的多重共线性,则重新根据研究问题选取初始分析变量。

多重共线性的影响、判定及消除的方法

由于这里是【计算过程】而不是【研究过程】,此处不推翻3.0部分的假设,着重探讨PCA的计算流程即可,故3.3和3.4部分可跳过,真正的研究过程再考虑特征矩阵如何取。

3.4 适合性检验(可跳过)

一组数据是否适用于主成分分析,必须做适合性检验。可以用球形检验和KMO统计量检验。

1. 球形检验(Bartlett)
球形检验的假设:
H0:相关系数矩阵为单位阵(即变量不相关)
H1:相关系数矩阵不是单位阵(即变量间有相关关系)

2. KMO(Kaiser-Meyer-Olkin)统计量
KMO统计量比较样本相关系数与样本偏相关系数,它用于检验样本是否适于作主成分分析。KMO的值在0-1之间,该值越大,则样本数据越适合作主成分分析和因子分析。一般要求该值大于0.5,方可作主成分分析或者相关分析。Kaiser在1974年给出了经验原则:

KMO值的范围 适合性情况
0.9以上 适合性很好
0.8~0.9 适合性良好
0.7~0.8 适合性中等
0.6~0.7 适合性一般
0.5~0.6 适合性不好
0.5以下 不能接受的

3.5 计算主成分贡献率及累计贡献率

第 i 个主成分的贡献率为:
λ i ∑ k = 1 p λ k \frac{\lambda_i}{\sum_{k=1}^p\lambda_k} k=1pλkλi

前 i 个主成分的累计贡献率为:
∑ j = 1 i λ j ∑ k = 1 p λ k \frac{\sum_{j=1}^i\lambda_j}{\sum_{k=1}^p\lambda_k} k=1pλkj=1iλj

3.6 选取和表示主成分

一般取累计贡献率超过80%的特征值所对应的第一、第二、…、第m(m ≤ p)个主成分。Fi表示第i个主成分:
F i = l i 1 X 1 + l i 2 X 2 + ⋯ + l i p X p , ( i = 1 , 2 , … , p ) F_i=l_{i1}X_1+l_{i2}X_2+\dots+l_{ip}X_p,(i=1,2,\dots,p) Fi=li1X1+li2X2++lipXp,(i=1,2,,p)

3.7 系数的简单分析

对于某个主成分而言,指标前面的系数越大(即 l i j l_{ij} lij),代表该指标对于该主成分的影响越大。


四、案例分析(python)

参考了这个链接:主成分分析(PCA)及其可视化——python。其中提供了两种方法,分别对应3.1为标准化去中心化的步骤,每一步都有注释和代码,很详细!

还有这个写的太好了qaq,英文的球球大家一定要看:Principal Component Analysis in 3 Simple Steps

4.1 一步一步PCA

1. 数据集
是从这部分的第一个链接里随便扣出来的部分数据,如果大家感兴趣可以玩玩。

链接:https://pan.baidu.com/s/108JPN6LGg7GJfxCiJaItZA
提取码:3w5u

2. 安装库

pip install pandas
pip install numpy
pip install seaborn
pip install matplotlib
pip install sklearn
pip install factor_analyzer

3. 读取数据集

import pandas as pd
import numpy as np
import seaborn as sns
# 读取数据集
df = pd.read_csv(r"D:\vscpro\PyThon\data.csv",
     sep=',',
     header=None).reset_index(drop=True)
df.columns = ['a', 'b', 'c']
df.dropna(how="all", inplace=True)
df.tail()

python pca分析,机器学习,数学建模,python,人工智能,算法,线性代数

4. 适合性检验(Bartlett && KMO)

from factor_analyzer.factor_analyzer import calculate_bartlett_sphericity
from factor_analyzer.factor_analyzer import calculate_kmo

df_check = df
# Bartlett 球状检验 
chi_square_value, p_value = calculate_bartlett_sphericity(df_check)
print("Bartlett=", chi_square_value, p_value)

# KMO检验(>0.5为好,越靠近1越好)
kmo_all, kmo_model = calculate_kmo(df_check)
print("KMO=", kmo_all)

python pca分析,机器学习,数学建模,python,人工智能,算法,线性代数

5. 标准化

# 标准化
from sklearn import preprocessing
from sklearn.preprocessing import StandardScaler
X = df.iloc[:, 0:3].values
Y = df.iloc[:, 2].values
X_std = StandardScaler().fit_transform(X)

df = preprocessing.scale(df)
print(df)

python pca分析,机器学习,数学建模,python,人工智能,算法,线性代数

6. 法一:计算系数相关矩阵并特征求解
金融领域常使用相关矩阵代替协方差矩阵。

# 系数相关性矩阵
covX = np.around(np.corrcoef(df.T), decimals = 3)
# 系数相关矩阵特征求解
featValue, featVec=  np.linalg.eig(covX.T)
print(featValue, featVec)

python pca分析,机器学习,数学建模,python,人工智能,算法,线性代数

7. 法二:计算协方差矩阵并特征求解

# 协方差矩阵
# ①写法:
# mean_vec = np.mean(X_std, axis=0)
# covX = (X_std - mean_vec).T.dot((X_std - mean_vec)) / (X_std.shape[0]-1)
# ②写法:
covX = np.cov(X_std.T)
# print(covX)

# 协方差矩阵特征求解
cov_mat = np.cov(X_std.T)
eig_vals, eig_vecs = np.linalg.eig(cov_mat)

# 基于相关矩阵的标准化数据的特征分解
cor_mat1 = np.corrcoef(X_std.T)
eig_vals, eig_vecs = np.linalg.eig(cor_mat1)

# 基于相关矩阵的原始数据的特征分解
cor_mat2 = np.corrcoef(X.T)
eig_vals, eig_vecs = np.linalg.eig(cor_mat2)
print(eig_vals, eig_vecs)

python pca分析,机器学习,数学建模,python,人工智能,算法,线性代数

8. 计算贡献率

# 特征值排序输出
featValue = sorted(featValue)[::-1]

# 贡献度
gx = featValue / np.sum(featValue)

#累计贡献度
lg = np.cumsum(gx)
print(featValue, gx, lg)

python pca分析,机器学习,数学建模,python,人工智能,算法,线性代数

9. 选取主成分

# 选取主成分,一般要超过80%或85%
k = [i for i in range(len(lg)) if lg[i] < 0.85]
k = list(k)
print(k)

python pca分析,机器学习,数学建模,python,人工智能,算法,线性代数
10. 表示主成分

# 主成分对应的特征向量矩阵
selectVec = np.matrix(featVec.T[k]).T
selectVe = selectVec*(-1)
print(selectVec)

# 表示主成分
finalData = np.dot(X_std, selectVec)
print(finalData)

python pca分析,机器学习,数学建模,python,人工智能,算法,线性代数

11. 绘制图像

import matplotlib.pyplot as plt
# 绘制散点图和折线图
plt.scatter(range(1, df.shape[1] + 1), featValue)
plt.plot(range(1, df.shape[1] + 1), featValue)

plt.title("Plot")  
plt.xlabel("Factors")
plt.ylabel("Eigenvalue")
 
plt.grid()
plt.show()

python pca分析,机器学习,数学建模,python,人工智能,算法,线性代数

4.2 sklearn的PCA

这个数据集是经典鸢尾花~

from sklearn.decomposition import PCA as sklearnPCA
sklearn_pca = sklearnPCA(n_components=2)
Y_sklearn = sklearn_pca.fit_transform(X_std)

# draw
with plt.style.context('seaborn-whitegrid'):
    plt.figure(figsize=(6, 4))
    for lab, col in zip(('Iris-setosa', 'Iris-versicolor', 'Iris-virginica'),
                        ('blue', 'red', 'green')):
        plt.scatter(Y_sklearn[y==lab, 0],
                    Y_sklearn[y==lab, 1],
                    label=lab,
                    c=col)
    plt.xlabel('Principal Component 1')
    plt.ylabel('Principal Component 2')
    plt.legend(loc='lower center')
    plt.tight_layout()
    plt.show()

python pca分析,机器学习,数学建模,python,人工智能,算法,线性代数

4.3 其他实现代码(长期更新)

这部分用来堆堆其他大佬们写的代码,方便后面学习和使用。

4.3.1 numpy实现和sklearn实现

来自主成分分析(PCA)原理详解

(1)PCA的Python实现

##Python实现PCA
import numpy as np
def pca(X,k):#k is the components you want
  #mean of each feature
  n_samples, n_features = X.shape
  mean=np.array([np.mean(X[:,i]) for i in range(n_features)])
  #normalization
  norm_X=X-mean
  #scatter matrix
  scatter_matrix=np.dot(np.transpose(norm_X),norm_X)
  #Calculate the eigenvectors and eigenvalues
  eig_val, eig_vec = np.linalg.eig(scatter_matrix)
  eig_pairs = [(np.abs(eig_val[i]), eig_vec[:,i]) for i in range(n_features)]
  # sort eig_vec based on eig_val from highest to lowest
  eig_pairs.sort(reverse=True)
  # select the top k eig_vec
  feature=np.array([ele[1] for ele in eig_pairs[:k]])
  #get new data
  data = np.dot(norm_X,np.transpose(feature))
  return data

X = np.array([[-1, 1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])

print(pca(X,1))

(2)sklearn的PCA

##用sklearn的PCA
from sklearn.decomposition import PCA
import numpy as np
X = np.array([[-1, 1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
pca = PCA(n_components=1)pca.fit(X)
print(pca.transform(X))

五、补充总结

PCA的数学思想:

  • 根据p个特征的线性组合,得到一个新的特征z,使得该特征的方差最大,该特征即为主成分。
  • 再次寻找p个特征的线性组合,得到新的特征,该特征与之前得到的主成分线性无关,且方差最大。

其余要点:文章来源地址https://www.toymoban.com/news/detail-777187.html

  • 如果每个主成分的贡献率都相差不多,则不建议使用PCA。因为它一定程度上舍弃了部分信息,来提高整体的计算效率。
  • 对于降维形成的主成分,我们经常无法找到其在实际情况中所对应的特征,即主成分的解释其含义一般带有模糊性,不像原始变量的含义那么清楚确切,这也是PCA的缺陷所在。
  • PCA不可用于评价类模型。可用于聚类、回归,如回归分析解决多重共线性。

六、参考链接

  1. 如何理解主成分分析法 (PCA)
  2. 清风数学建模学习笔记——主成分分析(PCA)原理详解及案例分析
  3. PCA的数学原理
  4. 【数据处理方法】主成分分析(PCA)原理分析
  5. 协方差矩阵和矩阵相关系数的理解

到了这里,关于主成分分析法(PCA)的理解(附python代码案例)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 主成分分析法(PCA)解析与MATLAB实践

    PCA(Principal Components Analysis)即主成分分析,也称主分量分析或主成分回归分析法,是一种无监督的数据降维方法,在机器学习中常用于特征降维提取主要特征以减少计算量。PCA主要原理是将高维原数据通过一个转换矩阵,映射到另一组低维坐标系下,从而实现数据降维。举个简

    2023年04月08日
    浏览(39)
  • 数据降维之主成分分析法PCA

    参考链接:https://www.bilibili.com/video/BV1E5411E71z 主成分分析(Principal Component Analysis,PCA), 是一种统计方法。通过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量,转换后的这组变量叫主成分。 在用统计分析方法研究多变量的课题时,变量个数太多就会增

    2023年04月11日
    浏览(40)
  • 数学建模(层次分析法 python代码 案例)

    目录 介绍:  模板: 例题:从景色、花费、饮食,男女比例四个方面去选取目的地  准则重要性矩阵:  每个准则的方案矩阵:​  一致性检验:  特征值法求权值: 完整代码: 运行结果:

    2024年04月29日
    浏览(40)
  • 数学建模:主成分分析法

    🔆 文章首发于我的个人博客:欢迎大佬们来逛逛 构建原始数据矩阵 X X X ,其中矩阵的形状为 x ∗ n x * n x ∗ n ,有 m m m 个对象, n n n 个评价指标。 然后进行矩阵的 归一化处理 。 首先计算矩阵的指标之间的 相关系数矩阵 R R R 。使用matlab 的 corr 即可得到。 计算相关系数矩

    2024年02月10日
    浏览(52)
  • 怎样计算权重?——层次分析法、熵值法:工具+数据+案例+代码

    1权重系数的计算 计算权重是一种常见的分析方法,在实际研究中,需要结合数据的特征情况进行选择,比如数据之间的波动性是一种信息量,那么可考虑使用CRITIC权重法或信息量权重法;也或者专家打分数据,那么可使用AHP层次法或优序图法。 结合各类方法计算权重的原理

    2024年02月05日
    浏览(81)
  • Spearman 相关性分析法,以及python的完整代码应用

    Spearman 相关性分析法是一种针对两个变量之间非线性关系的相关性计算方法,同时,它不对数据的分布进行假设。该方法的基本思想是将两个(也可以多个)变量的值进行排序,并计算它们之间的等级相关性(Spearman 相关系数)。Spearman 相关系数的范围在 -1 到 1 之间,取值为

    2024年02月09日
    浏览(44)
  • 主成分分析(PCA)-Python代码

    主成分分析是利用降维的思想,在损失很少信息的前提下把多个指标转化为几个综合指标的多元统计方法。 算法的具体步骤如下: 1)对向量X进行去中心化。 2)计算向量X的协方差矩阵,自由度可以选择0或者1。 3)计算协方差矩阵的特征值和特征向量。 4)选取最大的k个特

    2024年02月14日
    浏览(37)
  • 评价模型(一) 层次分析法(AHP),熵权法,TOPSIS分析 及其对应 PYTHON 实现代码和例题解释

    数学建模系列文章: 以下是个人在准备数模国赛时候的一些模型算法和代码整理,有空会不断更新内容: 评价模型(一)层次分析法(AHP),熵权法,TOPSIS分析 及其对应 PYTHON 实现代码和例题解释 评价模型(二)主成分分析、因子分析、二者对比及其对应 PYTHON 实现代码和例

    2024年02月08日
    浏览(56)
  • 【数学建模美赛 | 国赛必学模型算法精讲】层次分析法——模型原理及Matlab+Python双语言代码演示

    层次分析法 是 评价决策类 中一个比较常用的方法,很多留意美赛赛题的小伙伴们就会发现,在美赛EF类题目的历年O奖论文中,层次分析法出现的概率是非常高的。层次分析法呢一般是针对评价决策类的题目,让我们评价或选择一个可能更好、更优的政策及方案,那这样呢,

    2024年01月25日
    浏览(44)
  • 层次分析法(AHP)详解+完整代码

    ​ 层次分析法是一种主观赋值评价方法也是一个多指标综合评价算法,常用于综合评价类模型。层次分析法将与决策有关的元素分解成目标、准则、方案等多个层次,并在此基础上进行定性和定量分析,是一种简单、实用的算法。 ​ 原理:是在分析一个现象或问题之前,首

    2024年02月09日
    浏览(40)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包