数学建模之插值法

这篇具有很好参考价值的文章主要介绍了数学建模之插值法。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1 插值法概述


数模比赛中,常常需要根据已知的函数点进行数据、模型的处理和分析,而有时候现有的数据是极少的,不足以支撑分析的进行,这时就需要使用一些数学的方法,“模拟产生”一些新的但又比较靠谱的值来满足需求,这就是插值的作用。

那什么是插值法?


拉格朗日插值和埃尔米特插值对比,数学建模,数学建模

插值法又可以分为以下三类:


拉格朗日插值和埃尔米特插值对比,数学建模,数学建模

❗️ 注意:

  • 针对于建模比赛,我们一般只讨论多项式插值和分段插值,三角插值一般要用到傅里叶变换等复杂的数学工具。

2 插值法原理


一维插值 问题:


拉格朗日插值和埃尔米特插值对比,数学建模,数学建模


拉格朗日插值和埃尔米特插值对比,数学建模,数学建模
拉格朗日插值和埃尔米特插值对比,数学建模,数学建模

❗️ 注意:

  • 只要 n+1 个节点互异,满足上述插值条件的多项式是唯一的
  • 如果不限制多项式的次数,插值多项式并不唯一

3 拉格朗日插值


在数值分析中,拉格朗日插值法是以法国十八世纪数学家约瑟夫∙路易斯∙拉格朗日命名的一种多项式插值方法。在若干个不同的地方得到相应的观测值,拉格朗日插值法可以找到一个多项式,其恰好在各个观测的点取到观测到的值。

😋 举例:

拉格朗日插值和埃尔米特插值对比,数学建模,数学建模

由上述简单的例子可得,拉格朗日插值多项式

拉格朗日插值和埃尔米特插值对比,数学建模,数学建模

但是使用拉格朗日插值有个很大的缺点:龙格现象(Runge phenomenon)

  • 高次插值会产生龙格现象,即在两端处波动极大,产生明显的震荡。在不熟悉曲线运动趋势的前提下,不要轻易使用高次插值。

😋 举例:

拉格朗日插值和埃尔米特插值对比,数学建模,数学建模

拉格朗日插值和埃尔米特插值对比,数学建模,数学建模

我们已经知道了

  • 插值多项式次数高精度未必显著提高
  • 插值多项式次数越高摄入的误差可能显著增大

那么如何提高插值精度?—— 采用 分段低次插值


拉格朗日插值和埃尔米特插值对比,数学建模,数学建模

4 牛顿插值


拉格朗日插值和埃尔米特插值对比,数学建模,数学建模

与拉格朗日插值的对比:


拉格朗日插值和埃尔米特插值对比,数学建模,数学建模

拉格朗日插值和埃尔米特插值对比,数学建模,数学建模

拉格朗日插值和埃尔米特插值对比,数学建模,数学建模

❗️注意:

  • 所以我们几乎不用拉格朗日插值和牛顿插值,更多的是用下面介绍的埃尔米特(Hermite)插值以及三次样条插值

5 三次Hermite插值(重点)


不但要求在节点上的函数值相等,而且还要求对应的导数值也相等,甚至要求高阶导数也相等,满足这种要求的插值多项式就是 Hermite 插值多项式。


拉格朗日插值和埃尔米特插值对比,数学建模,数学建模

直接使用 Hermite 插值得到的多项式次数较高,也存在着龙格现象,因此在实际应用中,往往使用分段三次 Hermite 插值多项式 (PCHIP)


拉格朗日插值和埃尔米特插值对比,数学建模,数学建模

6 三次样条插值(重点)


拉格朗日插值和埃尔米特插值对比,数学建模,数学建模

拉格朗日插值和埃尔米特插值对比,数学建模,数学建模
拉格朗日插值和埃尔米特插值对比,数学建模,数学建模

7 各种插值法总结


由于拉格朗日插值和牛顿插值仅仅要求插值多项式在插值节点处与被插函数有相等的函数值,而这种插值多项式却不能全面反映被插值函数的性态,我们一般不用。

三次Hermite插值与样条插值结果对比

拉格朗日插值和埃尔米特插值对比,数学建模,数学建模

可以看出,三次样条生成的曲线更加光滑。在实际建模中,由于我们不知道数据的生成过程,因此这两种插值都可以使用。

8 n 维数据的插值


拉格朗日插值和埃尔米特插值对比,数学建模,数学建模

9 插值法拓展


以上插值算法也可用于短期预测


拉格朗日插值和埃尔米特插值对比,数学建模,数学建模

❗️注意:

  • 实际建模过程中,大家尽量不要用插值算法来预测,上面只是给大家举的一个小例子;如果要预测,可以选择拟合算法,也可以使用之后要学的专门用于预测的算法。

10 课后作业


建模实例:MathorCup 第六届A题 淡水养殖池塘水华发生及池水净化处理


拉格朗日插值和埃尔米特插值对比,数学建模,数学建模

华中农业大学特等奖文章

拉格朗日插值和埃尔米特插值对比,数学建模,数学建模


拉格朗日插值和埃尔米特插值对比,数学建模,数学建模

参考答案文章来源地址https://www.toymoban.com/news/detail-777228.html

到了这里,关于数学建模之插值法的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 数学建模之插值法

    数模比赛中,常常需要根据已知的函数点进行数据、模型的处理和分析,而有时候现有的数据是极少的,不足以支撑分析的进行,这时就需要使用一些数学的方法,“ 模拟产生 ”一些新的但又比较靠谱的值来满足需求,这就是插值的作用。 那什么是插值法? 插值法又可以分

    2024年02月03日
    浏览(48)
  • 数值分析:拉格朗日插值法笔记以及C++代码实现

    插值需求的诞生: 如何通过已知数据得到函数的近似解析表达式,从而获得更多的有用数据。 在实际应用中常常需要根据已知的函数点进行数据、模型的处理和分析,而有时候现有的数据是极少的,不足以支撑分析的进行,这时就需要使用一些数学的方法“模拟产生”一些

    2024年02月12日
    浏览(42)
  • 数学建模学习笔记(一):插值法

    本文主要内容是分享博主在学习MATLAB插值与拟合过程中的一些笔记与见解,并记录使用代码实现的过程 一维插值问题可描述为:已知函数在 x 0 , x 1 , … , x n x_0,x_1,…,x_n x 0 ​ , x 1 ​ , … , x n ​ 处的值 y 0 , y 1 , … , y n y_0,y_1,…,y_n y 0 ​ , y 1 ​ , … , y n ​ ,求简单函数 p (

    2024年02月06日
    浏览(56)
  • Lagrange插值法实验:求拉格朗日插值多项式和对应x的近似值matlab实现(内附代码)

    已知函数表: 求出Lagrange 插值多项式,并计算x=1.2处的y的近似值。 求解多项式: 求解近似值: 请输入横坐标向量X: X=[1, 2, 4, 5] 请输入纵坐标向量Y: Y=[16,12,8,9] 基函数为: q1(x)=(11 x^2)/12 - (19 x)/6 - x^3/12 + 10/3 q2(x)=(29 x)/6 - (5 x^2)/3 + x^3/6 - 10/3 q3(x)=(4 x^2)/3 - (17 x)/6 - x^3/6 + 5/3 q4(x)=

    2024年02月08日
    浏览(52)
  • 深度学习基础知识 最近邻插值法、双线性插值法、双三次插值算法

    最邻近插值:将每个目标像素找到距离它最近的原图像素点,然后将该像素的值直接赋值给目标像素 优点 :实现简单,计算速度快 缺点 :插值结果缺乏连续性,可能会产生锯齿状的边缘,对于图像质量影响较大,因此当处理精度要求较高的图像时,通常会采用更加精细的插

    2024年02月03日
    浏览(56)
  • 算法--插值法

    插值法是一种数学方法,主要用于通过已知的离散数据来估算未知值。常见的插值法有线性插值、最近邻插值、双线性插值和双三次插值。以下是其基本原理和应用: 线性插值:假设在两个已知数据点之间,数据的变化是线性的,因此可以通过已知的两点的坐标来计算经过这

    2024年01月18日
    浏览(44)
  • 基于Matlab的插值问题(Lagrange插值法、三次插值多项式)

    要求 1、 利用Lagrange插值公式 L n ( x ) = ∑ k = 0 n ( ∏ i = 0 , i ≠ k n x − x i x k − x i ) y k {L_n}(x) = sumlimits_{k = 0}^n {left( {prodlimits_{i = 0,i ne k}^n {frac{{x - {x_i}}}{{{x_k} - {x_i}}}} } right)} {y_k} L n ​ ( x ) = k = 0 ∑ n ​ ( i = 0 , i  = k ∏ n ​ x k ​ − x i ​ x − x i ​ ​ ) y k ​ 编写出

    2024年02月07日
    浏览(49)
  • 上采样(最近邻插值、双线性插值法、反池化、转置卷积)

    一般图像分割的时候,需要对图像进行像素级别的分类,因此在卷积提取到抽象特征后需要通过上采样将feature map还原到原图大小,在FCN和U-net等网络中都提到了上采样的操作,这里会一些上采样的方法进行总结。 最简单的图像缩放算法就是最近邻插值,也称作零阶插值,就

    2024年02月05日
    浏览(66)
  • Matlab图像处理-灰度插值法

    最近邻法 最近邻法是一种最简单的插值算法,输出像素的值为输入图像中与其最邻近的采样点的像素值。是将 ( u 0 , v 0 ) (u_0,v_0) 点最近的整数坐标 u , v (u,v) 点的灰度值取为 ( u 0 , v 0 ) (u_0,v_0) 点的灰度值。 在 ( u 0 , v 0 ) (u_0,v_0) 点各相邻像素间灰度变化较小时,这种方法是一

    2024年02月10日
    浏览(53)
  • 自动驾驶路径规划——轨迹规划(详解插值法)

    目录 前言 1. 轨迹规划 1.1 轨迹规划包括以下几个问题: 2. 三次多项式插值 ​​​​​​3.  过路径点的三次多项式插值 4. 用抛物线过渡的线性插值 过路径点的用抛物线过渡的线性插值 5. 高阶多项式插值 声明        这个学期学校开设了相应的课程,同时也在学习古月居

    2024年01月22日
    浏览(44)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包