Python轴承故障诊断 (一)短时傅里叶变换STFT

这篇具有很好参考价值的文章主要介绍了Python轴承故障诊断 (一)短时傅里叶变换STFT。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

目录

前言

1 短时傅里叶变换STFT原理介绍

1.1 傅里叶变换的本质

1.2 STFT概述

1.3 STFT的原理和过程

1.3.1 时间分割

1.3.2 傅里叶变换

1.3.3 时频图:

1.4 公式表示

2 基于Python的STFT实现与参数对比

2.1 代码示例

2.2 参数选择和对比

2.2.1 nperseg(窗口长度):

2.2.2 noverlap(重叠长度):

2.2.3 选择策略:

2.3 凯斯西储大学轴承数据的加载

2.4 STFT与参数选择

2.4.1 基于重叠比例为0.5,选择内圈数据比较 STFT 的不同尺度:16、32 、64、128

2.4.1 根据正常数据和三种故障数据,对比不同尺度的辨识度

3 基于时频图像的轴承故障诊断分类

3.1 生成时频图像数据集

3.2 定义数据加载器和VGG网络模型

3.3 设置参数,训练模型


标记数据记录了正常轴承和受损轴承的转速信号波动情况,请用傅里叶变换构建分类特,信号处理,python,人工智能,算法

往期精彩内容:

时序预测:LSTM、ARIMA、Holt-Winters、SARIMA模型的分析与比较-CSDN博客

Python-电能质量扰动信号数据介绍与分类-CSDN博客

Python-凯斯西储大学(CWRU)轴承数据解读与分类处理_cwru轴承数据集-CSDN博客

前言

本文基于凯斯西储大学(CWRU)轴承数据,进行短时傅里叶变换的介绍与参数选择,最后通过Python实现对故障数据的时频图像分类。凯斯西储大学(CWRU)轴承数据的详细介绍可以参考下文:

Python-凯斯西储大学(CWRU)轴承数据解读与分类处理_cwru轴承数据集-CSDN博客

1 短时傅里叶变换STFT原理介绍

1.1 傅里叶变换的本质

傅里叶变换的基本思想:

  • 将信号分解成一系列不同频率的连续正弦波的叠加;

  • 或者说,将信号从时间域转换到频率域。

标记数据记录了正常轴承和受损轴承的转速信号波动情况,请用傅里叶变换构建分类特,信号处理,python,人工智能,算法

由于傅里叶变换是对整个信号进行变换,将整个信号从时域转换到频域,得到一个整体的频谱;丢掉了时间信息,无法根据傅立叶变换的结果判断一个特定信号在什么时候发生;所以傅里叶变换缺乏时频分析能力、多分辨率分析能力,难以分析非平稳信号。

1.2 STFT概述

短时傅里叶变换(Short-Time Fourier Transform,STFT)是一种将信号分解为时域和频域信息的时频分析方法。它通过将信号分成短时段,并在每个短时段上应用傅里叶变换来捕捉信号的瞬时频率。即采用中心位于时间α的时间窗g(t-α)在时域信号上滑动,在时间窗g(t-α)限定的范围内进行傅里叶变换,这样就使短时傅里叶变换具有了时间和频率的局部化能力,兼顾了时间和频率的分析[1]。

  • 使用窄窗,时间分辨率提高而频率分辨率降低;

  • 使用宽窗,频率分辨率提高而时间分辨率降低。

标记数据记录了正常轴承和受损轴承的转速信号波动情况,请用傅里叶变换构建分类特,信号处理,python,人工智能,算法

比如用利用高斯窗STFT对非平稳信号进行分析:

标记数据记录了正常轴承和受损轴承的转速信号波动情况,请用傅里叶变换构建分类特,信号处理,python,人工智能,算法

1.3 STFT的原理和过程

1.3.1 时间分割

在短时傅里叶变换(STFT)中,首先将信号分割成短时段。这个过程通常通过使用窗口函数来实现,窗口函数是一个在有限时间内非零,而在其他时间上为零的函数。常见的窗口函数有矩形窗、汉明窗、汉宁窗等。通过将窗口函数应用于信号,可以将信号分成许多短时段。

1.3.2 傅里叶变换

对于每个短时段,都会进行傅里叶变换。傅里叶变换是一种将信号从时域(时间域)转换为频域(频率域)的方法。在这个上下文中,它用于分析每个短时段内信号的频率成分。傅里叶变换将信号表示为不同频率的正弦和余弦函数的组合。

1.3.3 时频图:

将每个短时段的傅里叶变换结果排列成一个矩阵,构成了时频图。时频图的横轴表示时间,纵轴表示频率,而每个点的强度表示对应频率在对应时刻的幅度。时频图提供了一种直观的方式来观察信号在时间和频率上的变化。

标记数据记录了正常轴承和受损轴承的转速信号波动情况,请用傅里叶变换构建分类特,信号处理,python,人工智能,算法

1.4 公式表示

STFT的数学表达式如下:

标记数据记录了正常轴承和受损轴承的转速信号波动情况,请用傅里叶变换构建分类特,信号处理,python,人工智能,算法

其中,

标记数据记录了正常轴承和受损轴承的转速信号波动情况,请用傅里叶变换构建分类特,信号处理,python,人工智能,算法

2 基于Python的STFT实现与参数对比

在 Python 中,使用 scipy 库来实现短时傅里叶变换(STFT)

2.1 代码示例

import numpy as np
import matplotlib.pyplot as plt
from scipy.signal import stft
# 生成三个不同频率成分的信号
fs = 1000  # 采样率
t = np.linspace(0, 1, fs, endpoint=False)  # 时间

# 第一个频率成分
signal1 = np.sin(2 * np.pi * 50 * t)
# 第二个频率成分
signal2 = np.sin(2 * np.pi * 120 * t)
# 第三个频率成分
signal3 = np.sin(2 * np.pi * 300 * t)

# 合并三个信号
signal = np.concatenate((signal1, signal2, signal3))

# 进行短时傅里叶变换  
f, t, spectrum = stft(signal, fs, nperseg=100, noverlap=50)
# 绘制时频图
plt.pcolormesh(t, f, np.abs(spectrum), shading='gouraud')
plt.title('STFT Magnitude')
plt.ylabel('Frequency [Hz]')
plt.xlabel('Time [sec]')
plt.show()

参数解释

  • nperseg:表示每个段的长度,即窗口大小

  • noverlap:表示相邻段的重叠部分

  • f:是频率数组,表示频谱的频率分量

  • t:是时间数组,表示每个时间段的起始时间

  • spectrum:是频谱矩阵,spectrum[f, t] 表示在频率 f 处于时间 t 时的频谱强度

可以使用 np.abs(spectrum) 获取频谱的幅度,表示在不同频率和时间上的信号强度

标记数据记录了正常轴承和受损轴承的转速信号波动情况,请用傅里叶变换构建分类特,信号处理,python,人工智能,算法

2.2 参数选择和对比

2.2.1 nperseg(窗口长度):

  • nperseg 定义了每个时间段内的信号长度,也就是说,它规定了窗口的大小。

  • 较小的 nperseg 可以提供更高的时间分辨率,因为窗口更短,可以捕捉到信号的更快变化。但频率分辨率较差。

  • 较大的 nperseg 提供更高的频率分辨率,但可能失去对信号快速变化的捕捉。

  • 选择适当的窗口长度要根据信号特性,如频率变化的速率和信号长度等。

2.2.2 noverlap(重叠长度):

  • noverlap 定义了相邻时间段之间的重叠部分。

  • 较大的 noverlap 可以提高时间分辨率,因为相邻时间段之间有更多的共享信息。但可能导致频谱图中的泄漏(leakage)。

  • 较小的 noverlap 可以提高频率分辨率,减少泄漏,但时间分辨率可能下降。

2.2.3 选择策略:

参数的选择需要考虑到对信号分析的具体需求,平衡时间和频率分辨率,尝试不同的 nperseg 和 noverlap 值,观察结果的变化。

  • 对于 nperseg,选择较小的值可能需要根据信号的特定频率内容进行调整。确保窗口足够短,以捕捉到频率变化。

  • 对于 noverlap,通常选择 50% 的重叠是一个常见的起点

2.3 凯斯西储大学轴承数据的加载

选择正常信号和 0.021英寸内圈、滚珠、外圈故障信号数据来做对比

第一步,导入包,读取数据

import numpy as np
from scipy.io import loadmat
import numpy as np
from scipy.signal import stft
import matplotlib.pyplot as plt
import matplotlib
matplotlib.rc("font", family='Microsoft YaHei')

# 读取MAT文件  
data1 = loadmat('0_0.mat')  # 正常信号
data2 = loadmat('21_1.mat') # 0.021英寸 内圈
data3 = loadmat('21_2.mat') # 0.021英寸 滚珠
data4 = loadmat('21_3.mat') # 0.021英寸 外圈
# 注意,读取出来的data是字典格式,可以通过函数type(data)查看。

第二步,数据集中统一读取 驱动端加速度数据,取一个长度为1024的信号进行后续观察和实验

# DE - drive end accelerometer data 驱动端加速度数据
data_list1 = data1['X097_DE_time'].reshape(-1)
data_list2 = data2['X209_DE_time'].reshape(-1)  
data_list3 = data3['X222_DE_time'].reshape(-1)
data_list4 = data4['X234_DE_time'].reshape(-1)
# 划窗取值(大多数窗口大小为1024)
data_list1 = data_list1[0:1024]
data_list2 = data_list2[0:1024]
data_list3 = data_list3[0:1024]
data_list4 = data_list4[0:1024]

第三步,进行数据可视化

plt.figure(figsize=(20,10))

plt.subplot(2,2,1)
plt.plot(data_list1)
plt.title('正常')
plt.subplot(2,2,2)
plt.plot(data_list2)
plt.title('内圈')
plt.subplot(2,2,3)
plt.plot(data_list3)
plt.title('滚珠')
plt.subplot(2,2,4)
plt.plot(data_list4)
plt.title('外圈')

plt.show()

标记数据记录了正常轴承和受损轴承的转速信号波动情况,请用傅里叶变换构建分类特,信号处理,python,人工智能,算法

2.4 STFT与参数选择

2.4.1 基于重叠比例为0.5,选择内圈数据比较 STFT 的不同尺度:16、32 、64、128

from scipy.signal import stft

# 设置STFT参数
window_size = 32  # 窗口大小
overlap = 0.5  # 重叠比例
# 计算重叠的样本数
overlap_samples = int(window_size * overlap)
frequencies1, times1, magnitude1 = stft(data_list2, nperseg=window_size, noverlap=overlap_samples)

# 设置STFT参数
window_size = 64  # 窗口大小
overlap = 0.5  # 重叠比例
# 计算重叠的样本数
overlap_samples = int(window_size * overlap)
frequencies2, times2, magnitude2 = stft(data_list2, nperseg=window_size, noverlap=overlap_samples)

# 设置STFT参数
window_size = 128  # 窗口大小
overlap = 0.5  # 重叠比例
# 计算重叠的样本数
overlap_samples = int(window_size * overlap)
frequencies3, times3, magnitude3 = stft(data_list2, nperseg=window_size, noverlap=overlap_samples)

# 设置STFT参数
window_size = 256  # 窗口大小
overlap = 0.5  # 重叠比例
# 计算重叠的样本数
overlap_samples = int(window_size * overlap)
frequencies4, times4, magnitude4 = stft(data_list2, nperseg=window_size, noverlap=overlap_samples

数据可视化

plt.figure(figsize=(20,10), dpi=100)
plt.subplot(2,2,1)
plt.pcolormesh(times1, frequencies1, np.abs(magnitude1), shading='gouraud')
plt.title('尺度 16-内圈')
plt.subplot(2,2,2)
plt.pcolormesh(times2, frequencies2, np.abs(magnitude2), shading='gouraud')
plt.title('尺度 32-内圈')
plt.subplot(2,2,3)
plt.pcolormesh(times3, frequencies3, np.abs(magnitude3), shading='gouraud')
plt.title('尺度 64-内圈')
plt.subplot(2,2,4)
plt.pcolormesh(times4, frequencies4, np.abs(magnitude4), shading='gouraud')
plt.title('尺度 128-内圈')
plt.show()

标记数据记录了正常轴承和受损轴承的转速信号波动情况,请用傅里叶变换构建分类特,信号处理,python,人工智能,算法

对比不同尺度的变化,大尺度有着较高的频率分辨率,小的尺度有着较高的时间分辨率,要权衡故障的分类辨识度,需要进一步做对比。

2.4.1 根据正常数据和三种故障数据,对比不同尺度的辨识度

标记数据记录了正常轴承和受损轴承的转速信号波动情况,请用傅里叶变换构建分类特,信号处理,python,人工智能,算法

标记数据记录了正常轴承和受损轴承的转速信号波动情况,请用傅里叶变换构建分类特,信号处理,python,人工智能,算法

综合考虑频率分辨率和时间分辨率,选择尺度为32。

3 基于时频图像的轴承故障诊断分类

下面以短时傅里叶变换(Short Time Fourier Transform,STFT)作为轴承故障数据的处理方法进行讲解:

数据介绍,凯斯西储大学(CWRU)轴承数据10分类数据集

标记数据记录了正常轴承和受损轴承的转速信号波动情况,请用傅里叶变换构建分类特,信号处理,python,人工智能,算法

train_set、val_set、test_set 均为按照7:2:1划分训练集、验证集、测试集,最后保存数据

3.1 生成时频图像数据集

标记数据记录了正常轴承和受损轴承的转速信号波动情况,请用傅里叶变换构建分类特,信号处理,python,人工智能,算法

如图所示为生成的时频图像数据集

标记数据记录了正常轴承和受损轴承的转速信号波动情况,请用傅里叶变换构建分类特,信号处理,python,人工智能,算法

3.2 定义数据加载器和VGG网络模型

制作数据标签,保存数据

标记数据记录了正常轴承和受损轴承的转速信号波动情况,请用傅里叶变换构建分类特,信号处理,python,人工智能,算法

定义VGG网络模型

标记数据记录了正常轴承和受损轴承的转速信号波动情况,请用傅里叶变换构建分类特,信号处理,python,人工智能,算法

3.3 设置参数,训练模型

标记数据记录了正常轴承和受损轴承的转速信号波动情况,请用傅里叶变换构建分类特,信号处理,python,人工智能,算法

100个epoch,准确率将近92%,继续调参可以进一步提高分类准确率

参考文献

[1]《小波分析及其工程应用》.机械工业出版社

标记数据记录了正常轴承和受损轴承的转速信号波动情况,请用傅里叶变换构建分类特,信号处理,python,人工智能,算法文章来源地址https://www.toymoban.com/news/detail-777725.html

到了这里,关于Python轴承故障诊断 (一)短时傅里叶变换STFT的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 从傅里叶变换,到短时傅里叶变换,再到小波分析(CWT),看这一篇就够了(附MATLAB傻瓜式实现代码)

    本专栏中讲了很多时频域分析的知识,不过似乎还没有讲过时频域分析是怎样引出的。 所以本篇将回归本源,讲一讲从傅里叶变换→短时傅里叶变换→小波分析的过程。 为了让大家更直观得理解算法原理和推导过程,这篇文章将主要使用图片案例。 频谱分析可以告诉我们一

    2024年01月16日
    浏览(38)
  • Python轴承故障诊断 (四)基于EMD-CNN的故障分类

    目录 前言 1 经验模态分解EMD的Python示例 2 轴承故障数据的预处理 2.1 导入数据 2.2 制作数据集和对应标签 2.3 故障数据的EMD分解可视化 2.4 故障数据的EMD分解预处理 3 基于EMD-CNN的轴承故障诊断分类 3.1 训练数据、测试数据分组,数据分batch 3.2 定义EMD-VGG1d网络模型 3.3 设置参数

    2024年04月27日
    浏览(34)
  • Python轴承故障诊断 (六)基于EMD-Transformer的故障分类

    目录 前言 1 经验模态分解EMD的Python示例 2 轴承故障数据的预处理 2.1 导入数据 2.2 制作数据集和对应标签 2.3 故障数据的EMD分解可视化 2.4 故障数据的EMD分解预处理 3 基于EMD-Transformer的轴承故障诊断分类 3.1 训练数据、测试数据分组,数据分batch 3.2 定义Transformer分类网络模型

    2024年02月04日
    浏览(50)
  • Python轴承故障诊断 (五)基于EMD-LSTM的故障分类

    目录 前言 1 经验模态分解EMD的Python示例 2 轴承故障数据的预处理 2.1 导入数据 2.2 制作数据集和对应标签 2.3 故障数据的EMD分解可视化 2.4 故障数据的EMD分解预处理 3 基于EMD-LSTM的轴承故障诊断分类 3.1 训练数据、测试数据分组,数据分batch 3.2 定义EMD-LSTM分类网络模型 3.3 设置

    2024年02月04日
    浏览(51)
  • CNN网络的故障诊断(轴承的多故障类型分类+Python代码)

            卷积神经网络作为深度学习的经典算法之一,凭借局部连接和权值共享的优点,有效地降低了传统神经网络的复杂度。卷积神经网络结构由输入层、卷积层、池化层、全连接层和输出层等构成。 图 卷积神经网络          卷积层采用多组卷积核与输入层进行卷

    2024年02月07日
    浏览(48)
  • 傅里叶变换及应用python版(2)

    欢迎关注公众号:sumsmile /专注图形学 起初,只是想弄清楚2D图像的频谱图的含义,没想到越肝越深,前后肝了一个多月。 接《傅里叶变换及应用python版(1)》,这篇主要讲代码,通过几个典型的案例,直观的理解傅里叶变换 代码参考教程: https://www.bilibili.com/video/BV1X8411a74G/?v

    2024年02月02日
    浏览(47)
  • Python图像处理笔记——傅里叶变换

    图像的频率是表征图像中灰度变化剧烈程度的指标,是灰度在平面空间上的梯度。(灰度变化得快频率就高,灰度变化得慢频率就低)。傅立叶变换是将图像从空间域转换到频率域,其逆变换是将图像从频率域转换到空间域。 傅立叶变换的物理意义: 将图像的灰度分布函数

    2024年02月08日
    浏览(42)
  • Python 傅里叶变换 Fourier Transform

    flyfish 一图胜千言 Fast Fourier Transform (FFT) 快速傅里叶变换 快速傅里叶逆变换 p e r i o d = 1 f r e q u e n c y period = frac{1}{frequency} p er i o d = f re q u e n cy 1 ​ 因为1、3、7相对2000,在坐标轴上太小把上述代码freq_feature 改成100,300,700更容易看出特点 继续绘制freq_feature =1、3、7的傅里叶变

    2024年02月20日
    浏览(37)
  • Python轴承故障诊断 (11)基于VMD+CNN-BiGRU-Attenion的故障分类

    目录 往期精彩内容: 前言 模型整体结构 1 变分模态分解VMD的Python示例 2 轴承故障数据的预处理 2.1 导入数据 2.2 故障VMD分解可视化 2.3 故障数据的VMD分解预处理 3 基于VMD-CNN-BiGRU-Attenion的轴承故障诊断分类 3.1 定义VMD-CNN-BiGRU-Attenion分类网络模型 3.2 设置参数,训练模型 3.3 模

    2024年01月19日
    浏览(48)
  • Python中利用FFT(快速傅里叶变换)进行频谱分析

    本文将从实例的角度出发讲解fft函数的基本使用,不包含复杂的理论推导。 要对一个信号进行频谱分析,首先需要知道几个基本条件。 采样频率fs 信号长度N(信号的点数) 采样频率fs: 根据采样定理可知,采样频率应当大于等于被测信号里最高频率的2倍,才能保证不失真

    2024年01月17日
    浏览(47)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包