关于超螺旋滑模控制(或称超扭滑模控制)的论文有很多,但关于其具体的稳定性证明却少之又少,数学功底不强的人很容易在中间步骤被卡壳。因此,笔者在这里给出详尽的稳定性证明过程,一并将超螺旋滑模控制理论介绍给各位读者,希望能为各位带来一定的参考。
关于该理论的详细证明过程,笔者目前没有找到其他文章,因此本文可以算作是全网第一篇完全详细推导的文章,喜欢的读者可以收藏加点赞。
本文需要读者具有一定的滑模控制理论的知识,可以点击传送门进行学习:滑模控制理论(SMC)概述。强烈建议读者阅读完该文章后再来阅读本文!
1. 系统模型
一般地,对于非线性系统可以建立具有标准柯西形式的微分方程组。令状态量为
x
=
x
1
,
x
2
=
x
˙
1
x = x_1,x_2 = \dot x_1
x=x1,x2=x˙1,则有:
{
x
˙
1
=
x
2
x
˙
2
=
f
+
g
⋅
u
\begin{cases} \dot x_1 = x_2 \\ \dot x_2 = f + g \cdot u \end{cases}
{x˙1=x2x˙2=f+g⋅u与传统的滑模控制相比,超螺旋控制算法使用积分来获得实际控制量,不含高频切换量,因而系统中没有抖振。
令滑模面为
s
s
s,只要满足如下方程:
{
s
˙
=
−
λ
∣
s
∣
1
2
⋅
s
i
g
n
(
s
)
+
ν
ν
˙
=
−
α
⋅
s
i
g
n
(
s
)
(1)
\begin{cases} \dot s = - \lambda \left| s \right| ^{\frac{1}{2}} \cdot sign (s) + \nu \\ \dot \nu = - \alpha \cdot sign(s) \tag{1} \end{cases}
{s˙=−λ∣s∣21⋅sign(s)+νν˙=−α⋅sign(s)(1)则系统即为稳定的。
2. 控制量设计
设状态
x
x
x的期望值为
x
d
x_d
xd,则跟踪误差为
e
1
=
x
1
−
x
d
e_1 = x_1 - x_d
e1=x1−xd 。设
e
2
=
e
˙
1
=
x
˙
1
−
x
˙
d
=
x
2
−
x
˙
d
e_2 = \dot e_1 = \dot x_1 - \dot x_d = x_2 - \dot x_d
e2=e˙1=x˙1−x˙d=x2−x˙d,并设滑模面为:
s
=
c
1
e
1
+
e
2
(2)
s = c_1 e_1 + e_2 \tag{2}
s=c1e1+e2(2)对其求导
s
˙
=
c
1
e
˙
1
+
e
˙
2
=
c
1
e
2
+
f
+
g
⋅
u
−
x
¨
d
\begin{aligned} \dot s &= c_1 \dot e_1 + \dot e_2 \\ &= c_1 e_2 + f + g \cdot u - \ddot x_d \end{aligned}
s˙=c1e˙1+e˙2=c1e2+f+g⋅u−x¨d容易看出,此时如果设
u
=
g
−
1
(
−
f
+
x
¨
d
−
c
1
e
2
−
λ
∣
s
∣
1
2
s
i
g
n
(
s
)
−
α
⋅
s
i
g
n
(
s
)
)
(3)
u = g^{-1} \left( -f + \ddot x_d - c_1 e_2 - \lambda \left| s \right| ^{\frac{1}{2}} sign (s) - \alpha \cdot sign(s) \right) \tag{3}
u=g−1(−f+x¨d−c1e2−λ∣s∣21sign(s)−α⋅sign(s))(3)则
s
˙
\dot s
s˙就能具有式(1)的形式。
对于(1)中参数设定为:
λ
˙
=
ω
1
γ
1
2
,
α
=
λ
ε
+
1
2
(
β
+
4
ε
2
)
(4)
\dot \lambda = \omega_1 \sqrt{\frac{\gamma_1}{2}},\\ \alpha = \lambda \varepsilon + \frac{1}{2} \left( \beta + 4 \varepsilon^2 \right) \tag{4}
λ˙=ω12γ1,α=λε+21(β+4ε2)(4)式中
α
,
β
,
ε
,
λ
,
ω
1
,
γ
1
\alpha, \beta, \varepsilon, \lambda, \omega_1, \gamma_1
α,β,ε,λ,ω1,γ1均大于零。
3. 稳定性证明
容易看出,与传统滑模控制不同的是, u u u中含有的不再是滑模面 s s s,而是其多项式 ∣ s ∣ 1 2 s i g n ( s ) \left| s \right| ^{\frac{1}{2}} sign(s) ∣s∣21sign(s)。除此之外,在 s ˙ \dot s s˙表达式中还出现了另一个参数 ν \nu ν(式(1))。不妨把这两者设定为新的状态变量,在此基础上设成李雅普诺夫函数。
令
{
z
1
=
∣
s
∣
1
2
s
i
g
n
(
s
)
z
2
=
ν
(5)
\begin{cases} z_1 = \left| s \right| ^{\frac{1}{2}} sign(s) \\ z_2 = \nu \end{cases} \tag{5}
{z1=∣s∣21sign(s)z2=ν(5)则对应的各自导数为
{
z
˙
1
=
1
2
∣
s
∣
−
1
2
s
˙
=
1
2
∣
s
∣
−
1
2
(
−
λ
∣
s
∣
1
2
s
i
g
n
(
s
)
−
α
⋅
s
i
g
n
(
s
)
)
z
˙
2
=
ν
˙
=
−
α
⋅
s
i
g
n
(
s
)
(6)
\begin{cases} \dot z_1 = \frac{1}{2} \left| s \right| ^{-\frac{1}{2}} \dot s = \frac{1}{2} \left| s \right| ^{-\frac{1}{2}} \left( -\lambda \left| s \right| ^{\frac{1}{2}} sign(s) - \alpha \cdot sign(s) \right) \\ \dot z_2 = \dot \nu = - \alpha \cdot sign(s) \end{cases} \tag{6}
{z˙1=21∣s∣−21s˙=21∣s∣−21(−λ∣s∣21sign(s)−α⋅sign(s))z˙2=ν˙=−α⋅sign(s)(6)又因为
∣
z
1
∣
=
∣
s
∣
1
2
\left| z_1 \right| = \left| s \right| ^{\frac{1}{2}}
∣z1∣=∣s∣21,故
1
∣
z
1
∣
=
∣
s
∣
−
1
2
\frac{1}{\left| z_1 \right|} = \left| s \right| ^{-\frac{1}{2}}
∣z1∣1=∣s∣−21。故式(6)即为
{
z
˙
1
=
1
2
∣
z
1
∣
(
−
λ
z
1
+
z
2
)
z
˙
2
=
ν
˙
=
−
α
⋅
s
i
g
n
(
s
)
=
−
α
⋅
s
i
g
n
(
s
)
⋅
∣
s
∣
1
2
⋅
∣
s
∣
−
1
2
=
−
α
∣
z
1
∣
z
1
(7)
\begin{cases} \dot z_1 = \frac{1}{2 \left| z_1 \right| } \left( -\lambda z_1 + z_2 \right) \\ \dot z_2 = \dot \nu = - \alpha \cdot sign(s) = - \alpha \cdot sign(s) \cdot \left| s \right| ^{\frac{1}{2}} \cdot \left| s \right| ^{-\frac{1}{2}} = -\frac{\alpha}{ \left| z_1 \right| } z_1 \end{cases} \tag{7}
{z˙1=2∣z1∣1(−λz1+z2)z˙2=ν˙=−α⋅sign(s)=−α⋅sign(s)⋅∣s∣21⋅∣s∣−21=−∣z1∣αz1(7)即:
{
z
˙
1
=
1
2
∣
z
1
∣
(
−
λ
z
1
+
z
2
)
z
˙
2
=
−
α
∣
z
1
∣
z
1
(7)
\begin{cases} \dot z_1 = \frac{1}{2 \left| z_1 \right| } \left( -\lambda z_1 + z_2 \right) \\ \dot z_2 = -\frac{\alpha}{ \left| z_1 \right| } z_1 \end{cases} \tag{7}
{z˙1=2∣z1∣1(−λz1+z2)z˙2=−∣z1∣αz1(7)设新的状态变量为
Z
=
[
z
1
z
2
]
Z = \left[ \begin{matrix} z_1 \\ z_2 \end{matrix} \right]
Z=[z1z2]并定义李雅普诺夫函数为
V
0
=
(
β
+
4
ε
2
)
z
1
2
+
z
2
2
−
4
ε
z
1
z
2
=
Z
T
P
Z
(8)
V_0 =\left( \beta + 4 \varepsilon^2 \right) z_1^2 + z_2^2 - 4 \varepsilon z_1 z_2 = Z^T P Z \tag{8}
V0=(β+4ε2)z12+z22−4εz1z2=ZTPZ(8)其中
P
=
[
β
+
4
ε
2
−
2
ε
−
2
ε
1
]
(9)
P = \left[ \begin{matrix} \beta + 4 \varepsilon^2 & -2 \varepsilon \\ -2 \varepsilon & 1 \end{matrix} \right] \tag{9}
P=[β+4ε2−2ε−2ε1](9)
定理1:矩阵
A
A
A正定的充要条件是矩阵
A
A
A的所有特征根均大于零。
根据定理1不难得出矩阵 P P P是正定的,因而李雅普诺夫函数 V 0 ≥ 0 V_0 \geq 0 V0≥0。
3.1 李雅普诺夫函数 V 0 V_0 V0的求导过程
直接对(8)求导。
V
˙
0
=
2
(
β
+
4
ε
2
)
z
1
z
˙
1
+
2
z
2
z
˙
2
−
4
ε
z
2
z
˙
1
−
4
ε
z
1
z
˙
2
=
2
(
β
+
4
ε
2
)
z
1
⋅
1
2
∣
z
1
∣
(
−
λ
z
1
+
z
2
)
+
2
z
2
(
−
α
∣
z
1
∣
z
1
)
−
4
ε
z
2
⋅
1
2
∣
z
1
∣
(
−
λ
z
1
+
z
2
)
−
4
ε
z
1
(
−
α
∣
z
1
∣
z
1
)
=
−
λ
∣
z
1
∣
(
β
+
4
ε
2
)
z
1
2
+
1
∣
z
1
∣
(
β
+
4
ε
2
)
z
1
z
2
−
2
α
∣
z
1
∣
z
1
z
2
+
2
λ
ε
∣
z
1
∣
z
1
z
2
−
2
ε
∣
z
1
∣
z
2
2
+
4
α
ε
∣
z
1
∣
z
1
2
=
1
∣
z
1
∣
[
4
α
ε
−
λ
(
β
+
4
ε
2
)
]
z
1
2
+
1
∣
z
1
∣
[
(
β
+
4
ε
2
)
−
2
α
+
2
λ
ε
]
z
1
z
2
−
2
ε
∣
z
1
∣
z
2
2
=
1
∣
z
1
∣
Z
T
[
4
α
ε
−
λ
(
β
+
4
ε
2
)
1
2
(
β
+
4
ε
2
)
−
α
+
λ
ε
1
2
(
β
+
4
ε
2
)
−
α
+
λ
ε
−
2
ε
]
Z
=
−
1
∣
z
1
∣
Z
T
Q
Z
(10)
\begin{aligned} \dot V_0 &= 2 \left( \beta + 4 \varepsilon^2 \right) z_1 \dot z_1 +2 z_2 \dot z_2 - 4 \varepsilon z_2 \dot z_1 - 4 \varepsilon z_1 \dot z_2 \\ &= 2 \left( \beta + 4 \varepsilon^2 \right) z_1 \cdot \frac{1}{2 \left| z_1 \right| } \left( -\lambda z_1 + z_2 \right) + 2 z_2 \left( -\frac{\alpha}{ \left| z_1 \right| } z_1 \right) - 4 \varepsilon z_2 \cdot \frac{1}{2 \left| z_1 \right| } \left( -\lambda z_1 + z_2 \right) - 4 \varepsilon z_1 \left( -\frac{\alpha}{ \left| z_1 \right| } z_1 \right) \\ &= - \frac{\lambda}{\left| z_1 \right| } \left( \beta + 4 \varepsilon^2 \right) z_1^2 + \frac{1}{\left| z_1 \right| } \left( \beta + 4 \varepsilon^2 \right) z_1 z_2 - \frac{2 \alpha}{\left| z_1 \right| } z_1 z_2 + \frac{2 \lambda \varepsilon}{\left| z_1 \right| } z_1 z_2 - \frac{2 \varepsilon}{\left| z_1 \right| } z_2^2 + \frac{4 \alpha \varepsilon}{\left| z_1 \right| } z_1^2 \\ &= \frac{1}{\left| z_1 \right| } \left[ 4 \alpha \varepsilon - \lambda \left( \beta + 4 \varepsilon^2 \right) \right] z_1^2 + \frac{1}{\left| z_1 \right| } \left[ \left( \beta + 4 \varepsilon^2 \right) - 2 \alpha + 2 \lambda \varepsilon \right] z_1 z_2 - \frac{2 \varepsilon}{ \left| z_1 \right| } z_2^2 \\ &= \frac{1}{\left| z_1 \right| } Z^T \left[ \begin{matrix} 4 \alpha \varepsilon - \lambda \left( \beta + 4 \varepsilon^2 \right) & \qquad \qquad \quad \frac{1}{2}\left( \beta + 4 \varepsilon^2 \right) - \alpha + \lambda \varepsilon \\ \frac{1}{2}\left( \beta + 4 \varepsilon^2 \right) - \alpha + \lambda \varepsilon & \qquad \qquad \quad -2 \varepsilon \end{matrix} \right] Z \\ &= -\frac{1}{\left| z_1 \right| }Z^TQZ \end{aligned} \tag{10}
V˙0=2(β+4ε2)z1z˙1+2z2z˙2−4εz2z˙1−4εz1z˙2=2(β+4ε2)z1⋅2∣z1∣1(−λz1+z2)+2z2(−∣z1∣αz1)−4εz2⋅2∣z1∣1(−λz1+z2)−4εz1(−∣z1∣αz1)=−∣z1∣λ(β+4ε2)z12+∣z1∣1(β+4ε2)z1z2−∣z1∣2αz1z2+∣z1∣2λεz1z2−∣z1∣2εz22+∣z1∣4αεz12=∣z1∣1[4αε−λ(β+4ε2)]z12+∣z1∣1[(β+4ε2)−2α+2λε]z1z2−∣z1∣2εz22=∣z1∣1ZT[4αε−λ(β+4ε2)21(β+4ε2)−α+λε21(β+4ε2)−α+λε−2ε]Z=−∣z1∣1ZTQZ(10)注意(10)中最后一个等号前加了负号。这样
Q
Q
Q即为
Q
=
[
−
4
α
ε
+
λ
(
β
+
4
ε
2
)
−
1
2
(
β
+
4
ε
2
)
+
α
−
λ
ε
−
1
2
(
β
+
4
ε
2
)
+
α
−
λ
ε
2
ε
]
(11)
Q = \left[ \begin{matrix} -4 \alpha \varepsilon + \lambda \left( \beta + 4 \varepsilon^2 \right) & \qquad -\frac{1}{2}\left( \beta + 4 \varepsilon^2 \right) + \alpha - \lambda \varepsilon \\ -\frac{1}{2}\left( \beta + 4 \varepsilon^2 \right) + \alpha - \lambda \varepsilon & \qquad 2 \varepsilon \end{matrix} \right] \tag{11}
Q=[−4αε+λ(β+4ε2)−21(β+4ε2)+α−λε−21(β+4ε2)+α−λε2ε](11)这样我们得到李雅普诺夫函数的导数:
V
˙
0
=
−
1
∣
z
1
∣
Z
T
Q
Z
(12)
\dot V_0 = -\frac{1}{\left| z_1 \right| }Z^TQZ \tag{12}
V˙0=−∣z1∣1ZTQZ(12)
3.2 关于李雅普诺夫函数导数的结论(必读部分)
我们把式(11)所代表的
Q
Q
Q表示为
Q
=
[
A
B
C
D
]
Q = \left[ \begin{matrix} A & B \\ C & D \end{matrix} \right]
Q=[ACBD]下面开始求
Q
Q
Q的特征根的一般形式。
∣
p
I
−
Q
∣
=
∣
p
−
A
−
B
−
C
p
−
D
∣
=
p
2
−
(
A
+
D
)
p
+
A
D
−
B
C
\left| pI - Q \right| = \left| \begin{matrix} p-A & -B \\ -C & p-D \end{matrix} \right| = p^2 - (A+D) p + AD - BC
∣pI−Q∣=∣
∣p−A−C−Bp−D∣
∣=p2−(A+D)p+AD−BC
Δ
=
b
2
−
4
a
c
=
(
A
+
D
)
2
−
4
(
A
D
−
B
C
)
=
(
A
−
D
)
2
+
4
B
C
\Delta = b^2 - 4ac = (A+D)^2 - 4(AD - BC) = (A-D)^2 +4BC
Δ=b2−4ac=(A+D)2−4(AD−BC)=(A−D)2+4BC特征根为
p
1
,
2
(
Q
)
=
A
+
D
±
(
A
−
D
)
2
+
4
B
C
2
p_{1,2} (Q) = \frac{A+D \pm \sqrt{(A-D)^2 +4BC}}{2}
p1,2(Q)=2A+D±(A−D)2+4BC设两个特征根中大的为
q
max
(
Q
)
q_{\max}(Q)
qmax(Q),小的为
q
min
(
Q
)
q_{\min}(Q)
qmin(Q),有
{
p
max
(
Q
)
=
A
+
D
+
(
A
−
D
)
2
+
4
B
C
2
p
min
(
Q
)
=
A
+
D
−
(
A
−
D
)
2
+
4
B
C
2
\begin{cases} p_{\max}(Q) = \frac{A+D + \sqrt{(A-D)^2 +4BC}}{2} \\ p_{\min} (Q)= \frac{A+D - \sqrt{(A-D)^2 +4BC}}{2} \end{cases}
⎩
⎨
⎧pmax(Q)=2A+D+(A−D)2+4BCpmin(Q)=2A+D−(A−D)2+4BC为方便表示,把根号部分记为
R
R
R,进而
p
min
(
Q
)
Z
T
Z
=
A
+
D
−
R
2
(
z
1
2
+
z
2
2
)
(13)
p_{\min} (Q)Z^TZ = \frac{A+D - R}{2} \left( z_1^2 + z_2^2 \right) \tag{13}
pmin(Q)ZTZ=2A+D−R(z12+z22)(13)另一方面有
Z
T
Q
Z
=
A
z
1
2
+
(
B
+
C
)
z
1
z
2
+
D
z
2
2
(14)
Z^TQZ = A z_1^2 + (B+C)z_1 z_2 + D z_2^2 \tag{14}
ZTQZ=Az12+(B+C)z1z2+Dz22(14)为比较
p
min
(
Q
)
Z
T
Z
p_{\min} (Q)Z^TZ
pmin(Q)ZTZ与
Z
T
Q
Z
Z^TQZ
ZTQZ的大小,不妨作差:
2
(
Z
T
Q
Z
−
p
min
(
Q
)
Z
T
Z
)
=
2
A
z
1
2
+
2
(
B
+
C
)
z
1
z
2
+
2
D
z
2
2
−
[
A
+
D
−
R
]
(
z
1
2
+
z
2
2
)
=
(
A
−
D
+
R
)
z
1
2
+
(
D
−
A
+
R
)
z
2
2
+
2
(
B
+
C
)
z
1
z
2
=
(
A
−
D
+
R
)
[
z
1
2
+
D
−
A
+
R
A
−
D
+
R
z
2
2
+
2
(
B
+
C
)
A
−
D
+
R
z
1
z
2
]
=
(
A
−
D
+
R
)
[
z
1
2
+
(
R
+
D
−
A
)
2
R
2
−
(
D
−
A
)
2
z
2
2
+
2
(
B
+
C
)
(
R
+
D
−
A
)
R
2
−
(
D
−
A
)
2
z
1
z
2
]
=
(
A
−
D
+
R
)
[
z
1
2
+
(
R
+
D
−
A
)
2
4
B
C
z
2
2
+
2
(
B
+
C
)
(
R
+
D
−
A
)
4
B
C
z
1
z
2
]
=
(
A
−
D
+
R
)
[
(
z
1
+
R
+
D
−
A
2
B
C
z
2
)
2
+
2
(
B
+
C
)
(
R
+
D
−
A
)
4
B
C
z
1
z
2
−
R
+
D
−
A
B
C
z
1
z
2
]
=
(
A
−
D
+
R
)
[
(
z
1
+
R
+
D
−
A
2
B
C
z
2
)
2
+
(
R
+
D
−
A
)
(
2
B
+
2
C
−
4
B
C
)
4
B
C
z
1
z
2
]
(15)
\begin{aligned} 2 \left( Z^TQZ - p_{\min} (Q)Z^TZ \right) &= 2A z_1^2 +2(B+C)z_1 z_2 + 2D z_2^2 - \left[ A+D - R \right] (z_1^2 + z_2^2 ) \\ &= \left( A - D + R \right) z_1^2 + \left( D-A+R \right) z_2^2 + 2 (B+C) z_1 z_2 \\ &= \left( A - D + R \right) \left[ z_1^2 + \frac{D-A+R}{A-D+R} z_2^2 + \frac{2(B+C)}{A-D+R}z_1 z_2 \right]\\ &= \left( A - D + R \right) \left[ z_1^2 + \frac{( R + D - A)^2}{R^2 - (D-A)^2} z_2^2 + \frac{2(B+C)(R+D-A)}{R^2 - (D-A)^2}z_1 z_2 \right] \\ &= \left( A - D + R \right) \left[ z_1^2 + \frac{(R+D-A)^2}{4BC}z_2^2 + \frac{2(B+C)(R+D-A)}{4BC}z_1 z_2 \right] \\ &= \left( A - D + R \right) \left[ \left( z_1 + \frac{R+D-A}{2 \sqrt{BC}}z_2 \right)^2 + \frac{2(B+C)(R+D-A)}{4BC}z_1 z_2 - \frac{R+D-A}{\sqrt{BC}}z_1 z_2 \right] \\ &= \left( A - D + R \right) \left[ \left( z_1 + \frac{R+D-A}{2 \sqrt{BC}}z_2 \right)^2 + \frac{(R+D-A)(2B+2C-4\sqrt{BC})}{4BC}z_1 z_2 \right] \tag{15} \end{aligned}
2(ZTQZ−pmin(Q)ZTZ)=2Az12+2(B+C)z1z2+2Dz22−[A+D−R](z12+z22)=(A−D+R)z12+(D−A+R)z22+2(B+C)z1z2=(A−D+R)[z12+A−D+RD−A+Rz22+A−D+R2(B+C)z1z2]=(A−D+R)[z12+R2−(D−A)2(R+D−A)2z22+R2−(D−A)22(B+C)(R+D−A)z1z2]=(A−D+R)[z12+4BC(R+D−A)2z22+4BC2(B+C)(R+D−A)z1z2]=(A−D+R)[(z1+2BCR+D−Az2)2+4BC2(B+C)(R+D−A)z1z2−BCR+D−Az1z2]=(A−D+R)[(z1+2BCR+D−Az2)2+4BC(R+D−A)(2B+2C−4BC)z1z2](15)对于(15),式中
(
A
−
D
+
R
)
\left( A-D+R \right)
(A−D+R)为常数项;因此最后结果可看成由2部分组成,第一部分为完全平方式,大于等于零;而对于第二部分的分子来说又分为
R
+
D
−
A
R+D-A
R+D−A和
2
B
+
2
C
−
4
B
C
2B+2C-4\sqrt{BC}
2B+2C−4BC两部分。其中:
R
+
D
−
A
=
(
A
−
D
)
2
+
4
B
C
+
D
−
A
=
(
A
−
D
)
2
+
4
B
C
−
(
A
−
D
)
≥
0
R+D-A = \sqrt{(A-D)^2 +4BC} +D-A = \sqrt{(A-D)^2 +4BC} - (A-D) \geq 0
R+D−A=(A−D)2+4BC+D−A=(A−D)2+4BC−(A−D)≥0而根据绝对不等式
2
B
+
2
C
−
4
B
C
≥
4
B
C
−
4
B
C
=
0
2B+2C-4\sqrt{BC} \geq 4 \sqrt{BC} - 4 \sqrt{BC} = 0
2B+2C−4BC≥4BC−4BC=0故式(15)的第二部分也大于等于零。
到这里我们总结可以得到:
Z
T
Q
Z
−
p
min
(
Q
)
Z
T
Z
≥
0
Z^TQZ - p_{\min}(Q) Z^TZ \geq 0
ZTQZ−pmin(Q)ZTZ≥0即
p
min
(
Q
)
Z
T
Z
≤
Z
T
Q
Z
(16)
p_{\min}(Q) Z^TZ \leq Z^TQZ \tag{16}
pmin(Q)ZTZ≤ZTQZ(16)同理可以得
p
max
(
Q
)
Z
T
Z
≥
Z
T
Q
Z
(17)
p_{\max} (Q)Z^TZ \geq Z^TQZ \tag{17}
pmax(Q)ZTZ≥ZTQZ(17)
3.3 李雅普诺夫函数导数的变换
式(17)是对
V
˙
0
=
−
1
∣
z
1
∣
Z
T
Q
Z
\dot V_0 = -\frac{1}{\left| z_1 \right| }Z^TQZ
V˙0=−∣z1∣1ZTQZ作出的,对于
V
0
=
Z
T
P
Z
V_0 = Z^TPZ
V0=ZTPZ同样根据式(17)有
p
max
(
P
)
Z
T
Z
≥
Z
T
P
Z
⟹
(
Z
T
P
Z
)
1
2
≤
p
max
1
2
(
P
)
(
Z
T
Z
)
1
2
=
p
max
1
2
(
P
)
∣
∣
Z
∣
∣
⟹
∣
∣
Z
∣
∣
≥
(
Z
T
P
Z
)
1
2
p
max
1
2
(
P
)
=
V
0
1
2
p
max
1
2
(
P
)
(18)
p_{\max} (P)Z^TZ \geq Z^TPZ \Longrightarrow \\ \left( Z^TPZ \right)^{\frac{1}{2}} \leq p_{\max}^{\frac{1}{2}}(P)\left( Z^T Z \right)^{\frac{1}{2}} = p_{\max}^{\frac{1}{2}} (P)\left| \left| Z \right| \right| \Longrightarrow \\ \left| \left| Z \right| \right| \geq \frac{\left( Z^TPZ \right)^{\frac{1}{2}}}{p_{\max}^{\frac{1}{2}}(P)} = \frac{V_0^{\frac{1}{2}}}{p_{\max}^{\frac{1}{2}}(P)} \tag{18}
pmax(P)ZTZ≥ZTPZ⟹(ZTPZ)21≤pmax21(P)(ZTZ)21=pmax21(P)∣∣Z∣∣⟹∣∣Z∣∣≥pmax21(P)(ZTPZ)21=pmax21(P)V021(18)另一方面
∣
∣
Z
∣
∣
=
z
1
2
+
z
2
2
=
(
∣
s
∣
1
2
s
i
g
n
(
s
)
)
2
+
ν
2
=
∣
s
∣
+
ν
2
≥
∣
s
∣
=
∣
s
∣
1
2
=
∣
z
1
∣
(19)
\left| \left| Z \right| \right| = \sqrt{z_1^2 + z_2^2} = \sqrt{\left( \left| s \right| ^{\frac{1}{2}} sign(s)\right)^2 + \nu^2} = \sqrt{\left| s \right| + \nu^2} \geq \sqrt{\left| s \right|} = \left| s \right| ^{\frac{1}{2}} = \left| z_1 \right| \tag{19}
∣∣Z∣∣=z12+z22=(∣s∣21sign(s))2+ν2=∣s∣+ν2≥∣s∣=∣s∣21=∣z1∣(19)由(19)推出
∣
z
1
∣
=
∣
s
∣
1
2
≤
∣
∣
Z
∣
∣
⟹
−
1
∣
z
1
∣
≤
−
1
∣
∣
Z
∣
∣
(20)
\left| z_1 \right| = \left| s \right| ^{\frac{1}{2}} \leq \left| \left| Z \right| \right| \Longrightarrow \\ -\frac{1}{ \left| z_1 \right|} \leq - \frac{1}{\left| \left| Z \right| \right|} \tag{20}
∣z1∣=∣s∣21≤∣∣Z∣∣⟹−∣z1∣1≤−∣∣Z∣∣1(20)又根据(16):
V
˙
0
=
−
1
∣
z
1
∣
Z
T
Q
Z
≤
−
1
∣
z
1
∣
p
min
(
Q
)
Z
T
Z
=
−
1
∣
z
1
∣
p
min
(
Q
)
∣
∣
Z
∣
∣
2
≤
−
1
∣
∣
Z
∣
∣
p
min
(
Q
)
∣
∣
Z
∣
∣
2
=
−
p
min
(
Q
)
∣
∣
Z
∣
∣
\begin{aligned} \dot V_0 &= -\frac{1}{ \left| z_1 \right|} Z^T Q Z \leq -\frac{1}{ \left| z_1 \right|} p_{\min}(Q) Z^TZ \\ &= -\frac{1}{ \left| z_1 \right|} p_{\min}(Q) \left| \left| Z \right| \right| ^2 \leq - \frac{1}{\left| \left| Z \right| \right| }p_{\min}(Q) \left| \left| Z \right| \right| ^2 \\ &= -p_{\min}(Q) \left| \left| Z \right| \right| \end{aligned}
V˙0=−∣z1∣1ZTQZ≤−∣z1∣1pmin(Q)ZTZ=−∣z1∣1pmin(Q)∣∣Z∣∣2≤−∣∣Z∣∣1pmin(Q)∣∣Z∣∣2=−pmin(Q)∣∣Z∣∣再根据(18)
V
˙
0
≤
−
p
min
(
Q
)
∣
∣
Z
∣
∣
≤
−
p
min
(
Q
)
V
0
1
2
p
max
1
2
(
P
)
=
−
r
V
0
1
2
(21)
\dot V_0 \leq -p_{\min}(Q) \left| \left| Z \right| \right| \leq -p_{\min}(Q)\frac{V_0^{\frac{1}{2}}}{p_{\max}^{\frac{1}{2}}(P)} = -r V_0 ^{\frac{1}{2}} \tag{21}
V˙0≤−pmin(Q)∣∣Z∣∣≤−pmin(Q)pmax21(P)V021=−rV021(21)其中
r
=
p
min
(
Q
)
p
max
1
2
(
P
)
(22)
r = \frac{p_{\min}(Q)}{p_{\max}^{\frac{1}{2}}(P)} \tag{22}
r=pmax21(P)pmin(Q)(22)
定理2:若系统的李雅普诺夫函数满足
V
˙
≤
−
r
V
1
2
,
(
r
>
0
)
\dot V \leq - r V ^{\frac{1}{2}}, \qquad \left( r >0 \right)
V˙≤−rV21,(r>0)则系统具有稳定性。
3.4 矩阵 Q Q Q的正定性的保证
根据定理2,式(21)保证了系统具有李雅普诺夫稳定性。读者可能注意到,式(21)只有在 r ≥ 0 r \geq 0 r≥0的情况下才能保证系统稳定性,而根据式(22),即需要 p min ( Q ) p_{\min}(Q) pmin(Q)和 p max 1 2 ( P ) p_{\max}^{\frac{1}{2}}(P) pmax21(P)均大于等于零。由于矩阵 P P P为正定的,因此 p max 1 2 ( P ) > 0 p_{\max}^{\frac{1}{2}}(P) > 0 pmax21(P)>0立即得证;下面需要保证 p min ( Q ) > 0 p_{\min}(Q) > 0 pmin(Q)>0,即保证矩阵 Q Q Q的正定性。
这里再次列出
Q
Q
Q的表达式:
Q
=
[
−
4
α
ε
+
λ
(
β
+
4
ε
2
)
−
1
2
(
β
+
4
ε
2
)
+
α
−
λ
ε
−
1
2
(
β
+
4
ε
2
)
+
α
−
λ
ε
2
ε
]
Q = \left[ \begin{matrix} -4 \alpha \varepsilon + \lambda \left( \beta + 4 \varepsilon^2 \right) & \qquad -\frac{1}{2}\left( \beta + 4 \varepsilon^2 \right) + \alpha - \lambda \varepsilon \\ -\frac{1}{2}\left( \beta + 4 \varepsilon^2 \right) + \alpha - \lambda \varepsilon & \qquad 2 \varepsilon \end{matrix} \right]
Q=[−4αε+λ(β+4ε2)−21(β+4ε2)+α−λε−21(β+4ε2)+α−λε2ε]不妨直接取
α
=
λ
ε
+
1
2
(
β
+
4
ε
2
)
(23)
\alpha = \lambda \varepsilon + \frac{1}{2} \left( \beta + 4 \varepsilon ^2 \right) \tag{23}
α=λε+21(β+4ε2)(23)这样
Q
Q
Q可以化简为一个对角矩阵
Q
=
[
(
λ
−
2
ε
)
(
β
+
4
ε
2
)
−
4
λ
ε
2
0
0
2
ε
]
Q = \left[ \begin{matrix} \left(\lambda - 2 \varepsilon \right) \left( \beta + 4 \varepsilon ^2 \right) - 4 \lambda \varepsilon^2 & \quad 0 \\ 0 & \quad 2 \varepsilon \end{matrix} \right]
Q=[(λ−2ε)(β+4ε2)−4λε2002ε]并能够一眼看出
Q
Q
Q的特征根为
p
1
(
Q
)
=
(
λ
−
2
ε
)
(
β
+
4
ε
2
)
−
4
λ
ε
2
,
p
2
(
Q
)
=
2
ε
p_1(Q) = \left(\lambda - 2 \varepsilon \right) \left( \beta + 4 \varepsilon ^2 \right) - 4 \lambda \varepsilon^2, \\ p_2 (Q) = 2 \varepsilon
p1(Q)=(λ−2ε)(β+4ε2)−4λε2,p2(Q)=2ε其中
p
2
(
Q
)
=
2
ε
>
0
p_2 (Q) = 2 \varepsilon > 0
p2(Q)=2ε>0立即得证,为保证
p
1
(
Q
)
>
0
p_1(Q) > 0
p1(Q)>0,需要有
λ
>
2
ε
(
β
+
4
ε
2
)
β
(24)
\lambda > \frac{2 \varepsilon \left( \beta + 4 \varepsilon ^2 \right)}{\beta} \tag{24}
λ>β2ε(β+4ε2)(24)
3.5 李雅普诺夫函数的更新
在3.4一节中给出了保证矩阵
Q
Q
Q正定性的条件。由于
α
,
λ
\alpha, \lambda
α,λ两参数是人为给出的,因此需要把这两个因素加入到李雅普诺夫函数中,构建新的李雅普诺夫函数:
V
=
V
0
+
1
2
γ
1
(
λ
−
λ
∗
)
2
+
1
2
γ
2
(
α
−
α
∗
)
2
(25)
V = V_0 + \frac{1}{2 \gamma_1} \left( \lambda - \lambda^* \right)^2 + \frac{1}{2 \gamma_2} \left( \alpha - \alpha^* \right)^2 \tag{25}
V=V0+2γ11(λ−λ∗)2+2γ21(α−α∗)2(25)其中
λ
∗
,
α
∗
\lambda^*, \alpha^*
λ∗,α∗为常数(未知)。
对其求导得下式(26):
V
˙
=
V
˙
0
+
1
γ
1
(
λ
−
λ
∗
)
λ
˙
+
1
γ
2
(
α
−
α
∗
)
α
˙
≤
−
r
V
0
1
2
+
1
γ
1
(
λ
−
λ
∗
)
λ
˙
+
1
γ
2
(
α
−
α
∗
)
α
˙
=
−
r
V
0
1
2
+
1
γ
1
(
λ
−
λ
∗
)
λ
˙
+
1
γ
2
(
α
−
α
∗
)
α
˙
−
ω
1
2
γ
1
∣
λ
−
λ
∗
∣
+
ω
1
2
γ
1
∣
λ
−
λ
∗
∣
−
ω
2
2
γ
2
∣
α
−
α
∗
∣
+
ω
2
2
γ
2
∣
α
−
α
∗
∣
(26)
\dot V = \dot V_0 + \frac{1}{\gamma_1} \left( \lambda - \lambda^* \right) \dot \lambda + \frac{1}{\gamma_2} \left( \alpha - \alpha^* \right) \dot \alpha \\ \leq -r V_0 ^{\frac{1}{2}} + \frac{1}{\gamma_1} \left( \lambda - \lambda^* \right) \dot \lambda + \frac{1}{\gamma_2} \left( \alpha - \alpha^* \right) \dot \alpha \\ = -r V_0 ^{\frac{1}{2}} + \frac{1}{\gamma_1} \left( \lambda - \lambda^* \right) \dot \lambda + \frac{1}{\gamma_2} \left( \alpha - \alpha^* \right) \dot \alpha - \frac{\omega_1}{\sqrt{2 \gamma_1}} \left| \lambda - \lambda^* \right| + \frac{\omega_1}{\sqrt{2 \gamma_1}} \left| \lambda - \lambda^* \right| - \frac{\omega_2}{\sqrt{2 \gamma_2}} \left| \alpha - \alpha^* \right| + \frac{\omega_2}{\sqrt{2 \gamma_2}} \left| \alpha - \alpha^* \right| \tag{26}
V˙=V˙0+γ11(λ−λ∗)λ˙+γ21(α−α∗)α˙≤−rV021+γ11(λ−λ∗)λ˙+γ21(α−α∗)α˙=−rV021+γ11(λ−λ∗)λ˙+γ21(α−α∗)α˙−2γ1ω1∣λ−λ∗∣+2γ1ω1∣λ−λ∗∣−2γ2ω2∣α−α∗∣+2γ2ω2∣α−α∗∣(26)根据
(
x
2
+
y
2
+
z
2
)
1
2
≤
∣
x
∣
+
∣
y
∣
+
∣
z
∣
\left( x^2 + y^2 + z^2 \right)^{\frac{1}{2}} \leq \left| x \right| + \left| y \right| + \left| z \right|
(x2+y2+z2)21≤∣x∣+∣y∣+∣z∣有
−
r
V
0
1
2
−
ω
1
2
γ
1
∣
λ
−
λ
∗
∣
−
ω
2
2
γ
2
∣
α
−
α
∗
∣
≤
−
[
r
2
V
0
+
ω
1
2
2
γ
1
(
λ
−
λ
∗
)
2
+
ω
2
2
2
γ
2
(
α
−
α
∗
)
2
]
1
2
-r V_0 ^{\frac{1}{2}} - \frac{\omega_1}{\sqrt{2 \gamma_1}} \left| \lambda - \lambda^* \right| - \frac{\omega_2}{\sqrt{2 \gamma_2}} \left| \alpha - \alpha^* \right| \leq - \left[ r^2 V_0 + \frac{\omega_1^2}{2 \gamma_1} \left( \lambda - \lambda^* \right)^2 + \frac{\omega_2^2}{2 \gamma_2} \left( \alpha - \alpha^* \right)^2 \right]^{\frac{1}{2}}
−rV021−2γ1ω1∣λ−λ∗∣−2γ2ω2∣α−α∗∣≤−[r2V0+2γ1ω12(λ−λ∗)2+2γ2ω22(α−α∗)2]21设
r
,
ω
1
,
ω
2
r, \omega_1, \omega_2
r,ω1,ω2中最小的数为
n
=
min
(
r
,
ω
1
,
ω
2
)
n = \min(r, \omega_1, \omega_2)
n=min(r,ω1,ω2),则上式为
−
r
V
0
1
2
−
ω
1
2
γ
1
∣
λ
−
λ
∗
∣
−
ω
2
2
γ
2
∣
α
−
α
∗
∣
≤
−
[
r
2
V
0
+
ω
1
2
2
γ
1
(
λ
−
λ
∗
)
2
+
ω
2
2
2
γ
2
(
α
−
α
∗
)
2
]
1
2
≤
−
n
[
V
0
+
1
2
γ
1
(
λ
−
λ
∗
)
2
+
1
2
γ
2
(
α
−
α
∗
)
2
]
1
2
=
−
n
V
1
2
-r V_0 ^{\frac{1}{2}} - \frac{\omega_1}{\sqrt{2 \gamma_1}} \left| \lambda - \lambda^* \right| - \frac{\omega_2}{\sqrt{2 \gamma_2}} \left| \alpha - \alpha^* \right| \leq - \left[ r^2 V_0 + \frac{\omega_1^2}{2 \gamma_1} \left( \lambda - \lambda^* \right)^2 + \frac{\omega_2^2}{2 \gamma_2} \left( \alpha - \alpha^* \right)^2 \right]^{\frac{1}{2}} \\ \leq - n \left[ V_0 + \frac{1}{2 \gamma_1} \left( \lambda - \lambda^* \right)^2 + \frac{1}{2 \gamma_2} \left( \alpha - \alpha^* \right)^2 \right]^{\frac{1}{2}} \\ = -n V^{\frac{1}{2}}
−rV021−2γ1ω1∣λ−λ∗∣−2γ2ω2∣α−α∗∣≤−[r2V0+2γ1ω12(λ−λ∗)2+2γ2ω22(α−α∗)2]21≤−n[V0+2γ11(λ−λ∗)2+2γ21(α−α∗)2]21=−nV21于是代入(26)有
V
˙
≤
−
r
V
0
1
2
+
1
γ
1
(
λ
−
λ
∗
)
λ
˙
+
1
γ
2
(
α
−
α
∗
)
α
˙
−
ω
1
2
γ
1
∣
λ
−
λ
∗
∣
+
ω
1
2
γ
1
∣
λ
−
λ
∗
∣
−
ω
2
2
γ
2
∣
α
−
α
∗
∣
+
ω
2
2
γ
2
∣
α
−
α
∗
∣
≤
−
n
V
1
2
+
1
γ
1
(
λ
−
λ
∗
)
λ
˙
+
1
γ
2
(
α
−
α
∗
)
α
˙
+
ω
1
2
γ
1
∣
λ
−
λ
∗
∣
+
ω
2
2
γ
2
∣
α
−
α
∗
∣
(27)
\dot V \leq -r V_0 ^{\frac{1}{2}} + \frac{1}{\gamma_1} \left( \lambda - \lambda^* \right) \dot \lambda + \frac{1}{\gamma_2} \left( \alpha - \alpha^* \right) \dot \alpha - \frac{\omega_1}{\sqrt{2 \gamma_1}} \left| \lambda - \lambda^* \right| + \frac{\omega_1}{\sqrt{2 \gamma_1}} \left| \lambda - \lambda^* \right| - \frac{\omega_2}{\sqrt{2 \gamma_2}} \left| \alpha - \alpha^* \right| + \frac{\omega_2}{\sqrt{2 \gamma_2}} \left| \alpha - \alpha^* \right| \\ \leq -n V^{\frac{1}{2}}+ \frac{1}{\gamma_1} \left( \lambda - \lambda^* \right) \dot \lambda + \frac{1}{\gamma_2} \left( \alpha - \alpha^* \right) \dot \alpha + \frac{\omega_1}{\sqrt{2 \gamma_1}} \left| \lambda - \lambda^* \right| + \frac{\omega_2}{\sqrt{2 \gamma_2}} \left| \alpha - \alpha^* \right| \tag{27}
V˙≤−rV021+γ11(λ−λ∗)λ˙+γ21(α−α∗)α˙−2γ1ω1∣λ−λ∗∣+2γ1ω1∣λ−λ∗∣−2γ2ω2∣α−α∗∣+2γ2ω2∣α−α∗∣≤−nV21+γ11(λ−λ∗)λ˙+γ21(α−α∗)α˙+2γ1ω1∣λ−λ∗∣+2γ2ω2∣α−α∗∣(27)由于
λ
∗
,
α
∗
\lambda^*, \alpha^*
λ∗,α∗为常数,不妨假设恒有
λ
∗
>
λ
,
α
∗
>
α
\lambda^*>\lambda, \alpha^*>\alpha
λ∗>λ,α∗>α。由于李雅普诺夫稳定性只要证明李雅普诺夫函数存在即可,因此总能找到这样的
λ
∗
,
α
∗
\lambda^*, \alpha^*
λ∗,α∗,该假设是合理的。
此时式(27)为
V
˙
≤
−
n
V
1
2
+
1
γ
1
(
λ
−
λ
∗
)
λ
˙
+
1
γ
2
(
α
−
α
∗
)
α
˙
+
ω
1
2
γ
1
∣
λ
−
λ
∗
∣
+
ω
2
2
γ
2
∣
α
−
α
∗
∣
=
−
n
V
1
2
−
1
γ
1
∣
λ
−
λ
∗
∣
λ
˙
−
1
γ
2
∣
α
−
α
∗
∣
α
˙
+
ω
1
2
γ
1
∣
λ
−
λ
∗
∣
+
ω
2
2
γ
2
∣
α
−
α
∗
∣
=
−
n
V
1
2
+
∣
λ
−
λ
∗
∣
(
ω
1
2
γ
1
−
λ
˙
γ
1
)
+
∣
α
−
α
∗
∣
(
ω
2
2
γ
2
−
α
˙
γ
2
)
(28)
\dot V \leq -n V^{\frac{1}{2}} + \frac{1}{\gamma_1} \left( \lambda - \lambda^* \right) \dot \lambda + \frac{1}{\gamma_2} \left( \alpha - \alpha^* \right) \dot \alpha + \frac{\omega_1}{\sqrt{2 \gamma_1}} \left| \lambda - \lambda^* \right| + \frac{\omega_2}{\sqrt{2 \gamma_2}} \left| \alpha - \alpha^* \right| \\ = -n V^{\frac{1}{2}} - \frac{1}{\gamma_1} \left| \lambda - \lambda^* \right| \dot \lambda - \frac{1}{\gamma_2} \left| \alpha - \alpha^* \right| \dot \alpha + \frac{\omega_1}{\sqrt{2 \gamma_1}} \left| \lambda - \lambda^* \right| + \frac{\omega_2}{\sqrt{2 \gamma_2}} \left| \alpha - \alpha^* \right| \\ = -n V^{\frac{1}{2}} + \left| \lambda - \lambda^* \right| \left( \frac{\omega_1}{\sqrt{2 \gamma_1}} - \frac{ \dot \lambda}{\gamma_1} \right) + \left| \alpha - \alpha^* \right| \left( \frac{\omega_2}{\sqrt{2 \gamma_2}} - \frac{ \dot \alpha}{\gamma_2} \right) \tag{28}
V˙≤−nV21+γ11(λ−λ∗)λ˙+γ21(α−α∗)α˙+2γ1ω1∣λ−λ∗∣+2γ2ω2∣α−α∗∣=−nV21−γ11∣λ−λ∗∣λ˙−γ21∣α−α∗∣α˙+2γ1ω1∣λ−λ∗∣+2γ2ω2∣α−α∗∣=−nV21+∣λ−λ∗∣(2γ1ω1−γ1λ˙)+∣α−α∗∣(2γ2ω2−γ2α˙)(28)
此时若令
λ
˙
=
ω
1
γ
1
2
(29)
\dot \lambda = \omega_1 \sqrt{\frac{\gamma_1}{2}} \tag{29}
λ˙=ω12γ1(29)即可使式(28)变为
V
˙
≤
−
n
V
1
2
+
∣
α
−
α
∗
∣
(
ω
2
2
γ
2
−
α
˙
γ
2
)
=
−
n
V
1
2
+
η
(30)
\dot V \leq -n V^{\frac{1}{2}} + \left| \alpha - \alpha^* \right| \left( \frac{\omega_2}{\sqrt{2 \gamma_2}} - \frac{ \dot \alpha}{\gamma_2} \right) = -n V^{\frac{1}{2}} + \eta \tag{30}
V˙≤−nV21+∣α−α∗∣(2γ2ω2−γ2α˙)=−nV21+η(30)其中
η
=
∣
α
−
α
∗
∣
(
ω
2
2
γ
2
−
α
˙
γ
2
)
(31)
\eta = \left| \alpha - \alpha^* \right| \left( \frac{\omega_2}{\sqrt{2 \gamma_2}} - \frac{ \dot \alpha}{\gamma_2} \right) \tag{31}
η=∣α−α∗∣(2γ2ω2−γ2α˙)(31)根据定理2,式(30)使得系统具有稳定性。
3.6 系统各部分总结
系统具有如下为标准柯西形式:
{
x
˙
1
=
x
2
x
˙
2
=
f
+
g
⋅
u
\begin{cases} \dot x_1 = x_2 \\ \dot x_2 = f + g \cdot u \end{cases}
{x˙1=x2x˙2=f+g⋅u设计滑模面为
s
=
c
1
e
1
+
e
2
s = c_1 e_1 + e_2
s=c1e1+e2以及控制量
u
u
u:
u
=
g
−
1
(
−
f
+
x
¨
d
−
c
1
e
2
−
λ
∣
s
∣
1
2
s
i
g
n
(
s
)
−
α
⋅
s
i
g
n
(
s
)
)
u = g^{-1} \left( -f + \ddot x_d - c_1 e_2 - \lambda \left| s \right| ^{\frac{1}{2}} sign (s) - \alpha \cdot sign(s) \right)
u=g−1(−f+x¨d−c1e2−λ∣s∣21sign(s)−α⋅sign(s))并设计自适应律为
λ
˙
=
ω
1
γ
1
2
λ
>
2
ε
(
β
+
4
ε
2
)
β
α
=
λ
ε
+
1
2
(
β
+
4
ε
2
)
\dot \lambda = \omega_1 \sqrt{\frac{\gamma_1}{2}} \\ \lambda > \frac{2 \varepsilon \left( \beta + 4 \varepsilon ^2 \right)}{\beta} \\ \alpha = \lambda \varepsilon + \frac{1}{2} \left( \beta + 4 \varepsilon^2 \right)
λ˙=ω12γ1λ>β2ε(β+4ε2)α=λε+21(β+4ε2)则系统具有稳定性:
V
˙
≤
−
n
V
1
2
+
η
\dot V \leq -n V^{\frac{1}{2}} + \eta
V˙≤−nV21+η文章来源:https://www.toymoban.com/news/detail-778155.html
4. 总结
就笔者而言,超螺旋滑模控制内容的精髓在于巧妙设计了状态量 z 1 = ∣ s ∣ 1 2 s i g n ( s ) z_1 = \left| s \right| ^{\frac{1}{2}} sign(s) z1=∣s∣21sign(s),使得后续的导数与不等式计算大大简化,很多项可以巧妙消去。此外,尽管在(29)中不等式右边有正数项 η \eta η的存在,系统依然可以在一定限度内保持稳定,原因在于我们证明了 V ˙ ≤ − n V 1 2 ≤ 0 \dot V \leq -n V^{\frac{1}{2}} \leq 0 V˙≤−nV21≤0而非传统的 V ˙ ≤ 0 \dot V \leq 0 V˙≤0,这更大程度上能够保证系统稳定性。文章来源地址https://www.toymoban.com/news/detail-778155.html
到了这里,关于超螺旋滑模控制详细介绍(全网独家)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!