【随手记录】Llama Tutorial 大语言模型实践 手把手系列带实践源码

这篇具有很好参考价值的文章主要介绍了【随手记录】Llama Tutorial 大语言模型实践 手把手系列带实践源码。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

这个tutorial的契机是yy突然看到了一个workshop 所以类似于一周大作业的形式,输入command输出使用了自动驾驶哪些模块,代码在这里 所以就干一干,顺便写一个tutorial给大家参考和教程 引申更多的应用

参考资料:

  1. https://github.com/facebookresearch/codellama, https://github.com/facebookresearch/llama
  2. 模型申请地址:https://ai.meta.com/llama/ → 然后按download,填写完后 就会收到两封邮件
  3. https://github.com/oobabooga/text-generation-webui
  4. 写tutorial期间的代码:https://github.com/KTH-RPL/DriveCmd_LLM

所有模型参数和所需要的GPU并行,注意这只是模型load占用的memory 如果token或者batch size较大 也需要很多GPU显存,表格下方会说明每个之间的区别,MP是指并行GPU的数量 默认是多少,所有模型我都在 这边服务器的A100试过 Size已经是乘过数量的了 是总和需要的memory

Model Size MP
code-7B ~12.5G 1
code-13B 24G 2
code-34B 63G 4
7b-chat ~12.5G 1
13b-chat 24G 2
70b-chat ~160G 8

  • 7B, 13B, 34B 指示模型参数量
  • chat 指示经过了对话的fine-tuned 【 llama2论文原文:a fine-tuned version of Llama 2 that is optimized for dialogue use cases】
  • code 指示此llama版本经过了code数据集的训练,can use text prompts to generate and discuss code. 此处为 官方blog

温馨提示 下列内容和 此 https://github.com/KTH-RPL/DriveCmd_LLM README 有重复:里面包含了example和我们写的prompt流程等 and yy尝试的chatgpt api那边的script

1. 申请下载模型

具体如图:

【随手记录】Llama Tutorial 大语言模型实践 手把手系列带实践源码,llama,语言模型,人工智能
  1. https://ai.meta.com/llama/ 点击download
  2. 填写资料,勾上所有的东西
  3. 接受terms 然后点continue
  4. 大概10分钟内能收到两封邮件,告诉你可用的权重和其下载地址【注意!这个地址有限制比如下载超过3次/24小时后 请重新返回步骤一】

2. 模型部署

正如前言中提到的,大部分本地自己用的电脑 可能只能跑最小的模型也就是7b的 GPU的占用率大概是12G,如下图为我运行repo里的代码时占用截图 【上一个A100试了一下 这么一看我本机3090 也带不动】

内存的增大原因:

  • prompt 长短 也就是你给模型的输入文字 可能很多 【这也是为什么chatgpt按token收费
  • 输出的语句长短 也就是模型给你的回答 【我这因为让他解释他的输出了 所以也比较长
【随手记录】Llama Tutorial 大语言模型实践 手把手系列带实践源码,llama,语言模型,人工智能

回归正题,接下来是clone两边的代码,一个是code一个是llama 前者经过了八股文、leetcode训练【我是这么理解的 hhh 通俗易懂】 后者是原生态

  1. https://github.com/facebookresearch/llama, 注意复制链接的时候 也别给错了 看对邮件给
  2. https://github.com/facebookresearch/codellama 同上理

以下为演示截图

【随手记录】Llama Tutorial 大语言模型实践 手把手系列带实践源码,llama,语言模型,人工智能
  1. git clone 对应代码
  2. 进入文件夹
  3. 运行download.sh
  4. copy 邮件里收到的下载链接【第一次没看仔细 一直在填自己的email 可还行
  5. 选择下载什么模型,注意全部下载的话 可能比较大 建议硬盘空间不够的 选一个最小的 先试试

3. 模型运行

这一步官方的README写的挺不错的,依赖很少 照着pip install -r requirements.txt就行,基本无障碍,最好是建一个conda的环境,别和系统混了,此处为运行示例:

torchrun --nproc_per_node 1 example_completion.py \
    --ckpt_dir CodeLlama-7b/ \
    --tokenizer_path CodeLlama-7b/tokenizer.model \
    --max_seq_len 128 --max_batch_size 4

截图运行及GPU占用:

【随手记录】Llama Tutorial 大语言模型实践 手把手系列带实践源码,llama,语言模型,人工智能

正常我们想要的应该是chat 聊天形式的所以选择以下模型会有更好的效果:

Model Size MP
CodeLlama-7b-Instruct ~12.5G 1
CodeLlama-13b-Instruct 24G 2
CodeLlama-34b-Instruct 63G 4
llama-2-7b-chat ~12.5G 1
llama-2-13b-chat 24G 2
llama-2-70b-chat ~160G 8

4. More

可以参考 前言中我提到的task 给出的一个结果调用,这里是任务的报告pdf:https://arxiv.org/abs/2311.08206 更方便大家直接选择和对比,对应代码在 https://github.com/KTH-RPL/DriveCmd_LLM

【随手记录】Llama Tutorial 大语言模型实践 手把手系列带实践源码,llama,语言模型,人工智能

还有就是如果想自己部署一个chatgpt,或者是在苹果系统下(which 内存就是显卡内存 可以参考这个b站视频:苹果M2 Ultra:AI大模型的新希望

自己部署一个chatgpt参考code:

  • llama or codellama 作为model和basic
  • text generation web UI 作为一个web的界面 这样才能开启正常对话, https://github.com/oobabooga/text-generation-webui

部署后的示意图:

【随手记录】Llama Tutorial 大语言模型实践 手把手系列带实践源码,llama,语言模型,人工智能

同时这里面也提到了其他的大语言模型 可以尝试的:Multiple model backends: transformers, llama.cpp, ExLlama, ExLlamaV2, AutoGPTQ, GPTQ-for-LLaMa, CTransformers, AutoAWQ

还有一些vision assistance的模型可以一起,免费版chatgpt 4.0 (但是试了一下即使是70B的 效果在我们的任务上也没有 3.5API调用的高,果然还是钱的问题

其中有一个大视觉语言模型 可以关注:https://github.com/haotian-liu/LLaVA

5. Llama2 论文速读

主要是记录一下一些细节 比如模型和模型之间的不同,fine-tuned的实现等。

首先是关于llama2-chat的训练,如下图:得到llama2后 经过RLHF 步骤得到的chat模型 【RLHF 是一种模型训练过程,应用于微调的语言模型,以进一步使模型行为与人类偏好和指令遵循保持一致。】

【随手记录】Llama Tutorial 大语言模型实践 手把手系列带实践源码,llama,语言模型,人工智能

下图说明了 训练的一些细节:文章来源地址https://www.toymoban.com/news/detail-778504.html

  • token是指将所有number 拆分成独立的digits 然后使用use bytes 去decompose 未知的UTF-8,总的词汇是32k token
  • 预训练 2T 的token后 模型也没有饱和
【随手记录】Llama Tutorial 大语言模型实践 手把手系列带实践源码,llama,语言模型,人工智能

到了这里,关于【随手记录】Llama Tutorial 大语言模型实践 手把手系列带实践源码的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 本地环境运行Llama 3大型模型:可行性与实践指南

    Llama 是由 Meta(前身为 Facebook)的人工智能研究团队开发并开源的大型语言模型(LLM),它对商业用途开放,对整个人工智能领域产生了深远的影响。继之前发布的、支持4096个上下文的Llama 2模型之后,Meta 进一步推出了性能更卓越的 Meta Llama 3系列语言模型,包括一个8B(80亿

    2024年04月28日
    浏览(39)
  • 桌面平台层安全随手记录

    本文是学习桌面云安全技术要求. 而整理的学习笔记,分享出来希望更多人受益,如果存在侵权请及时联系我们 用户标识 一般要求 本项要求包括: a) 系统应为用户提供唯一的身份标识,同时将用户的身份标识与该用户的所有可审计事件相关联; b) 系统应能对用户进行角色划分

    2024年02月10日
    浏览(37)
  • 快速上手!LLaMa-Factory最新微调实践,轻松实现专属大模型

    Yuan2.0(https://huggingface.co/IEITYuan)是浪潮信息发布的新一代基础语言大模型,该模型拥有优异的数学、代码能力。自发布以来,Yuan2.0已经受到了业界广泛的关注。当前Yuan2.0已经开源参数量分别是102B、51B和2B的3个基础模型,以供研发人员做进一步的开发。 LLM(大语言模型)微

    2024年01月20日
    浏览(54)
  • 基础语言模型LLaMA

    LLaMA包含从7B到65B参数的基础语言模型集合。Meta在数万亿个tokens上训练了模型,LLaMA-13B在大多数基准测试中优于GPT-3(175B)。 来自: LLaMA: Open and Efficient Foundation Language Models 在大量文本语料库上训练的大型语言模型已经显示出它们能够从文本指令或几个示例中执行新任务。当

    2024年02月15日
    浏览(40)
  • 大模型微调踩坑记录 - 基于Alpaca-LLaMa+Lora

    为了使用开放权重的LLM(大语言模型),基于自己的训练集,微调模型,会涉及到如下一些技术要点: 配置运行环境 下载、加载基础模型 收集语料、微调训练 检验训练效果 在实施过程中,遇到不少困难,因此写下这篇文档,做为记录。 (1) 问题描述 在huggingface的模型库中,大

    2024年02月09日
    浏览(42)
  • Llama大型语言模型原理详解

    Llama大型语言模型是一种基于深度学习的自然语言处理模型,它在文本生成、问答、摘要等多种NLP任务中展现出强大的性能。本文将详细解析Llama模型的原理,包括其结构、训练过程以及工作机制,帮助读者深入理解这一先进的模型。 一、模型结构 Llama模型采用了一种基于T

    2024年04月12日
    浏览(38)
  • Llama2开源大模型的新篇章以及在阿里云的实践

    Llama一直被誉为AI社区中最强大的开源大模型。然而,由于开源协议的限制,它一直不能被免费用于商业用途。然而,这一切在7月19日发生了改变,当Meta终于发布了大家期待已久的免费商用版本Llama2。Llama2是一个由Meta AI开发的预训练大语言模型,它可以接受任何自然语言文本

    2024年02月16日
    浏览(43)
  • YOLOv5入门实践(5)——从零开始,手把手教你训练自己的目标检测模型(包含pyqt5界面)

      通过前几篇文章,相信大家已经学会训练自己的数据集了。本篇是YOLOv5入门实践系列的最后一篇,也是一篇总结,我们再来一起按着 配置环境--标注数据集--划分数据集--训练模型--测试模型--推理模型 的步骤,从零开始,一起实现自己的目标检测模型吧! 前期回顾: YOLO

    2023年04月26日
    浏览(63)
  • llama.cpp LLM模型 windows cpu安装部署踩坑记录

    一直想在自己的笔记本上部署一个大模型验证,早就听说了llama.cpp,可是一直没时间弄。 今天终于有时间验证了。首先本机安装好g++,cmake.我下载的cmake版本是cmake-3.27.0-rc4-windows-x86_64.msi。安装时选择增加系统变量。接着GitHub - ggerganov/llama.cpp: Port of Facebook\\\'s LLaMA model in C/C++ 执行

    2024年02月15日
    浏览(43)
  • 大规模语言模型--LLaMA 家族

    LLaMA 模型集合由 Meta AI 于 2023 年 2 月推出, 包括四种尺寸(7B 、13B 、30B 和 65B)。由于 LLaMA 的 开放性和有效性, 自从 LLaMA 一经发布, 就受到了研究界和工业界的广泛关注。LLaMA 模型在开放基准的各 种方面都取得了非常出色的表现, 已成为迄今为止最流行的开放语言模型。大

    2024年04月25日
    浏览(43)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包