c++ 旅行商问题(动态规划)

这篇具有很好参考价值的文章主要介绍了c++ 旅行商问题(动态规划)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

一、旅行商问题简介

旅行商问题

  TSP,即旅行商问题,又称TSP问题(Traveling Salesman
Problem),是数学领域中著名问题之一。

问题概述

  假设有一个旅行商人要拜访N个城市,他必须选择所要走的路径,路径的限制是每个城市只能拜访一次,而且最后要回到原来出发的城市。路径的选择目标是要求得的路径路程为所有路径之中的最小值。TSP问题是一个NPC问题。

问题由来

  TSP的历史很久,最早的描述是1759年欧拉研究的骑士周游问题,即对于国际象棋棋盘中的64个方格,走访64个方格一次且仅一次,并且最终返回到起始点。

  TSP由美国RAND公司于1948年引入,该公司的声誉以及线形规划这一新方法的出现使得TSP成为一个知名且流行的问题。

示例:
旅行商问题,算法,动态规划,c++,算法

黑色数字代表点、红色代表路径的花费

输入:

4 6
1 2 1
1 4 2
1 3 4
2 3 1
2 4 2
3 4 3

输出:

运行中...

最短距离为:72条最短路径:
路径11-->4-->3-->2-->1
路径21-->2-->3-->4-->1

提示:

第一行输入点的个数n和边的个数m,点的编号为1~n
接下来m行输入m条边以及花费,p1 p2 v,表示点p1和点p2之间有一条无向边,边的花费为v

二、基本思路

  1、我们需要知道,我们求的路径是一个环,所以无论从哪里开始,结果都应该是一样的,就像例题中的;
最短路径可表示为 1–>4–>3–>2–>1
那么它也可以表示为 4–>3–>2–>1–>4
还可以表示为 3–>2–>1–>4–>3

所以我们可以从任意的点出发去查找路径

  2、旅行商问题只有当图是哈密顿图时才可能有解的,即需要满足题意,可以从一个点出发,到达所有的点一次,然后回到起点。

这个可以通过最后运行的结果判断,我们令初始答案是一个很大的值,如果查找后答案没有被改变,则该图无解

  3、按照传统的暴力搜索,时间复杂度为O(n!),而动态规划可以将复杂度减低到O(n2*2n)

  4、有个注意的点,起点需要走两遍,为了简化问题,只需要预处理从起点走到其它点的最小花费,而起点不能标记为已经走过,因为后面还有回到原点

三、实现

1、状态压缩

  我们需要表达我们已经走过了哪些点,目前到达了哪里,有什么办法表达出来呢?

  暴力是万能的,我们可以开一个数组dp[i][j],代表目前到达了i点,dp[i][j]的值代表j点是否已经走过了,但是这样做的话我们状态转移会变得很麻烦,状态压缩就是它的优化

  状态压缩是通过二进制实现的,我们知道int有32位,那么我们可以用第0位代表第0个点的状态,第1位代表第1个点状态…第n位代表第n个点的状态,位的值如果是1的话就代表该点已经走过了,例如17的二进制为0000010001,代表第0个点和第4个点已经走过了

  那么我们可以开一个数组dp[i][j],代表目前走到了i点,用j代表已经走过了哪些点,例如:
dp[0][17],17的二进制为0000010001,代表目前在第0个点,已经走过第0个点和第4个点。
dp[4][17],17的二进制为0000010001,代表目前在第4个点,已经走过第0个点和第4个点。

  我们可以用dp[i][j]的值代表当前这个状态的最小花费,例如dp[0][17]=12,那么就代表到达该状态需要的最小花费是12

2、状态转移

  dp的基本思想就是记录某个状态的最优解,再从目前的状态转移到新的状态,从局部最优解转移到全局最优解

  我们用数组a[i][j]存储图,那么a[i][j]的值就代表从i点到j点的花费

  我们如何求状态dp[0][19]的最优解?
  19的二进制是0000010011,因为18的二进制为0000010010,那么dp[0][19]可以由dp[4][18],dp[1][18]转移过来,最小花费是dp[0][19]=min(dp[4][18]+a[4][0],dp[1][18]+a[1][0])

  即我们要求大的状态,那么就需要先把小状态最优解求出来。反过来我们求出了所有小状态,那么就可以求出大状态的最优解

旅行商问题,算法,动态规划,c++,算法

  {1,2,3}代表第1、2、3个点都已经走过了

  可以发现,小状态总是比大状态小的,那么我们可以从0状态枚举到2n-1状态,获取到每个状态的最优解

我们还可以反过来想,从小状态去更新大的状态
旅行商问题,算法,动态规划,c++,算法
  两种思路都可以

四、代码

  下面代码是基于逆向思想的,即从小状态更新大状态。理解透了的同学不妨尝试写一下大状态调用小状态更新的代码

#include<bits/stdc++.h>
using namespace std;
int n,m;//n点的个数,m边的个数 
int a[15][15];//邻接矩阵存无向图 
int dp[15][1<<15];//dp[i][j]代表从最后走到i点到达状态j 
int t;//一共有t个状态 


void init(){//初始化 
	memset(a,0x3f,sizeof a);
	memset(dp,0x3f,sizeof dp);
	cout<<"请输入点和边的个数:"<<endl;
	cin>>n>>m;
	cout<<"请输入"<<m<<"条边:"<<endl;
	for(int i=0;i<m;i++){
		int x,y,val; 
		cin>>x>>y>>val;
		x--;
		y--;
		a[x][y]=val;
		a[y][x]=val;
	}
} 


void run(){//dp核心算法 
	t=(1<<n);
	for(int i=1;i<n;i++){//因为起点初始不能被标记已经走过,所以需要手动初始化起点到达其它点的花费 
		dp[i][1<<i]=a[0][i];
	}
	for(int i=0;i<t;i++){//枚举每一个状态 
		for(int j=0;j<n;j++){//枚举每一个没有走过的点 
			if(((i>>j)&1)==0){
				for(int k=0;k<n;k++){//枚举每一个走过的点 
					if(((i>>k)&1)==1&&dp[j][i^(1<<j)]>dp[k][i]+a[k][j]){//取最优状态 
						dp[j][i^(1<<j)]=dp[k][i]+a[k][j];
					}
				}
			}
		}
	}
}

int tt;//记录 
vector<int> path(1,0);//初始化从0点出发 ,存储单条路径 
vector<vector<int> > paths;//存储所有的路径 
void getPath(int p){//递归查找所有路径 
	if((tt^(1<<p))==0){//如果是最后一个点了就存储改路径 
		paths.push_back(path);
		return; 
	}
	for(int j=1;j<n;j++){
		//回溯算法,一个加法的原则
		//如果点1到达点5的最短距离为100,点1到达点3的最短距离是70
		//而点3和点5之间的距离为30 ,那么点3是点1到5之间的一个中间点
		//即1-->...-->3-->5 
		if(a[j][p]+dp[j][tt^(1<<p)]==dp[p][tt]){
			tt^=(1<<p);
			path.push_back(j);
			getPath(j);
			tt^=(1<<p);
			path.pop_back();
		}
	}
	
} 

void print(){//打印路径 
	cout<<"最短距离为:"<<dp[0][t-1]<<endl;
	cout<<"共"<<paths.size()<<"条最短路径:" <<endl; 
	for(int i=0;i<paths.size();i++){
		cout<<"路径"<<i+1<<":1";
		for(int j=paths[i].size()-1;j>=0;j--){
			cout<<"-->"<<paths[i][j]+1;
		}
		cout<<endl;
	}
}

int main(){
	init();
	cout<<"运行中..."<<endl<<endl; 
	run(); 
	cout<<"运行结果:"<<endl; 
	
	if(dp[0][t-1]==0x3f3f3f3f){//无解 
		cout<<"该图不是哈密顿图!"<<endl;
		return 0;
	}
	
	tt=t-1;
	getPath(0);
	
	print(); 
} 

五、复杂度分析

  时间复杂度: 求最小花费枚举2n种状态,每种状态枚举每一个没有走过的点,每一个没走过的点需要枚举每一个已经走过的点,时间复杂度O(n2*2n),求所有路径,时间复杂度将退化为O(n!)
  空间复杂度: 记录每个点的2n种状态,空间复杂度O(n*2n)文章来源地址https://www.toymoban.com/news/detail-778729.html

到了这里,关于c++ 旅行商问题(动态规划)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 整数规划——分支界定算法(旅行商问题,规约矩阵求解)

    一、普通优化问题分枝定界求解 题目的原问题为   在计算过程中,利用MATLAB中的linprog()函数进行求解最优解,具体的计算步骤如下: A为约束系数矩阵,B为等式右边向量,C为目标函数的系数向量。   进行第一次最优求解以A=[2 9;11 -8],B=[40;82],C=[-3,-13]利用linprog函数求解。解

    2024年02月16日
    浏览(40)
  • C++算法初级11——01背包问题(动态规划2)

    辰辰采药 辰辰是个天资聪颖的孩子,他的梦想是成为世界上最伟大的医师。为此,他想拜附近最有威望的医师为师。医师为了判断他的资质,给他出了一个难题。医师把他带到一个到处都是草药的山洞里对他说:“孩子,这个山洞里有一些不同的草药,采每一株都需要一些时

    2024年02月02日
    浏览(50)
  • C++ DP算法,动态规划——背包问题(背包九讲)

    有N件物品和一个容量为 V V V 的背包。放入第i件物品耗费的空间是 C i C_i C i ​ ,得到的价值是 W i W_i W i ​ 。 求解将哪些物品装入背包可使价值总和最大。 这是最基础的背包问题,特点是:每种物品仅有一件,可以选择放或不放。 用子问题定义状态:即 F [ i , v ] F[i, v] F

    2024年02月16日
    浏览(51)
  • 【算法每日一练]-动态规划(保姆级教程 篇13)POJ2686马车旅行 #POJ3254 玉米田 #POJ1185:炮兵阵地

    目录 今天知识点 dp每个票的使用情况,然后更新此票状态下的最优解,dp到没有票就行了 把状态压缩成j,dp每行i的种植状态,从i-1行进行不断转移 把状态压缩成j,dp每行i的布置状态,从i-1和i-2行进行不断转移 POJ2686马车旅行 思路: POJ3254 玉米田 思路: POJ1185:炮兵阵地 思路:

    2024年02月04日
    浏览(53)
  • 算法分析与设计-数字三角形问题(动态规划)(通俗易懂,附源码和图解,含时间复杂度分析)(c++)

    (一)题目 问题描述 给定一个由 n n n 行数字组成的数字三角形,如图所示。 试设计一个算法,计算从三角形的顶至底的一条路径,使该路径经过的数字总和最大。 算法设计 对于给定的由 n n n 行数字组成的数字三角形,计算从该三角形的顶至底的路径经过的数字和的最大值

    2023年04月10日
    浏览(45)
  • 【算法思维】-- 动态规划(C++)

    OJ须知: 一般而言,OJ在1s内能接受的算法时间复杂度:10e8 ~ 10e9之间 (中值5*10e8) 。在竞赛中, 一般认为计算机1秒能执行 5*10e8 次计算 。 时间复杂度 取值范围 o(log2n) 大的离谱 O(n) 10e8 O(nlog(n)) 10e6 O(nsqrt(n))) 10e5 O(n^2) 5000 O(n^3) 300 O(2^n) 25 O(3^n) 15 O(n!) 11 时间复杂度排序: o(1

    2024年02月02日
    浏览(50)
  • 【动态规划】C++算法:最长有效括号

    视频算法专题 动态规划汇总 给你一个只包含 ‘(’ 和 ‘)’ 的字符串,找出最长有效(格式正确且连续)括号子串的长度。 示例 1: 输入:s = “(()” 输出:2 解释:最长有效括号子串是 “()” 示例 2: 输入:s = “)()())” 输出:4 解释:最长有效括号子串是 “()()” 示例

    2024年02月01日
    浏览(58)
  • 【动态规划】C++算法:403.青蛙过河

    视频算法专题 动态规划汇总 一只青蛙想要过河。 假定河流被等分为若干个单元格,并且在每一个单元格内都有可能放有一块石子(也有可能没有)。 青蛙可以跳上石子,但是不可以跳入水中。 给你石子的位置列表 stones(用单元格序号 升序 表示), 请判定青蛙能否成功过

    2024年01月17日
    浏览(48)
  • C++算法 —— 动态规划(3)多状态

    每一种算法都最好看完第一篇再去找要看的博客,因为这样会帮你梳理好思路,看接下来的博客也就更轻松了。当然,我也会尽量在写每一篇时都可以让不懂这个算法的人也能边看边理解。 动规的思路有五个步骤,且最好画图来理解细节,不要怕麻烦。当你开始画图,仔细阅

    2024年02月09日
    浏览(39)
  • C++动态规划-线性dp算法

    莫愁千里路 自有到来风 CSDN 请求进入专栏                                    X 是否进入《 C++ 专栏》? 确定 目录  线性dp简介 斐波那契数列模型  第N个泰波那契数 思路: 代码测试:  三步问题 思路: 代码测试: 最小花费爬楼梯 思路: 代码测试:  路径问题 数字三

    2024年02月19日
    浏览(48)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包