图论专栏一《图的基础知识》

这篇具有很好参考价值的文章主要介绍了图论专栏一《图的基础知识》。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

图论(Graph Theory)是数学的一个分支。它以图为研究对象。图论中的图是由若干给定的点及连接两点的线所构成的图形,这种图形通常用来描述某些实体之间的某种特定关系,用点代表实体,用连接两点的线表示两个实体间具有的某种关系。
相比矩阵、张量、序列等结构,图结构可以有效建模和解决社会关系、交通网络、文法结构和论文引用等需要考虑实体间关系的各种实际问题。因此,为了能够有效利用图结构这种工具,我们必须要对图的定义、类型和性质有一定的认识。

 概念

图是由顶点(vertex)和边(edge)组成的数据结构

如下图:

图论专栏一《图的基础知识》,数据结构与算法,图论

节点(node)用红色标出,通过黑色的边(edge)连接。

图可用于表示:

  • 社交网络
  • 网页
  • 生物网络

我们可以在图上执行怎样的分析?

  • 研究拓扑结构和连接性
  • 群体检测
  • 识别中心节点
  • 预测缺失的节点
  • 预测缺失的边

为了方便大家的学习,下面我先来介绍一下图的基本术语。

基本术语

图的分类

有向图(Directed Graph):

  • 在有向图中,每条边都有一个方向,从一个顶点指向另一个顶点。
  • 如果顶点 A 到顶点 B 有一条有向边,则我们称顶点 A 直接指向顶点 B。这意味着从顶点 A 出发可以到达顶点 B,但反之则不一定成立。
  • 有向图常用于表示具有方向性关系的问题,例如交通流向、网页链接、任务依赖关系等。

无向图(Undirected Graph):

  • 在无向图中,边没有方向,即连接两个顶点的边可以被看作是双向的。
  • 如果顶点 A 与顶点 B 之间有一条边,那么顶点 A 与顶点 B 之间是相互连通的,可以双向移动。
  • 无向图常用于表示无方向性关系的问题,例如社交网络中的好友关系、道路交通图等。

无向完全图:无向图中,任意两个顶点之间都存在边。

有向完全图:有向图中,任意两个顶点之间都存在方向互为相反的两条弧。

简单图:图中不存在顶点到其自身的边,且同一条边不重复出现。

稀疏图:有很少条边。

稠密图:有很多条边。

子图(Subgraph):假设G=(V,{E})和G‘=(V',{E'}),如果V'包含于V且E'包含于E,则称G'为G的子图。

:顶点之间的逻辑关系用边来表示,边集可以是空的。

无向边(Edge):若顶点V1到V2之间的边没有方向,则称这条边为无向边。

无向图(Undirected graphs):图中任意两个顶点之间的边都是无向边。(A,D)=(D,A)

    对于无向图G来说,G1=(V1,{E1}),其中顶点集合V1={A,B,C,D};边集和E1={(A,B),(B,C),(C,D),(D,A),(A,C)}

图论专栏一《图的基础知识》,数据结构与算法,图论

有向边:若从顶点V1到V2的边有方向,则称这条边为有向边,也称弧(Arc)。用<V1,V2>表示,V1为弧尾(Tail),V2为弧头(Head)。(V1,V2)≠(V2,V1)。

是指与该顶点相邻的边的数量。

图论专栏一《图的基础知识》,数据结构与算法,图论

例如上图图中

  • A、B、C、E、F 这几个顶点度数为 2

  • D 顶点度数为 4

有向图中,细分为入度出度,参见下图

图论专栏一《图的基础知识》,数据结构与算法,图论

分析上图可知个顶点的出度与入度如下:
  • A (2 out / 0 in)   两个出度,没有入度

  • B、C、E (1 out / 1 in)

  • D (2 out / 2 in)

  • F (0 out / 2 in)

边可以有权重,代表从源顶点到目标顶点的距离、费用、时间或其他度量。

图论专栏一《图的基础知识》,数据结构与算法,图论

路径

路径被定义为从一个顶点到另一个顶点的一系列连续边,例如上图中【北京】到【上海】有多条路径。

  • 北京 - 上海

  • 北京 - 武汉 - 上海

路径长度

  • 不考虑权重,长度就是边的数量

  • 考虑权重,一般就是权重累加

有向图中,从一个顶点开始,可以通过若干条有向边返回到该顶点,那么就形成了一个环。

如下图:

图论专栏一《图的基础知识》,数据结构与算法,图论

图的连通性

如果两个顶点之间存在路径,则这两个顶点是连通的,所有顶点都连通,则该图被称之为连通图,若子图连通,则称为连通分量

graph LR
    A --- B
    A --- C
    C --- D
    D --- E
    B --- E
    F --- G
    G --- H
    H --- F
    I --- J

根据上面给出的点与点之间的连通性,可得出下图:

图论专栏一《图的基础知识》,数据结构与算法,图论

强连通分量:有向图中的极大强连通子图。

生成树:无向图中连通且n个顶点n-1条边叫生成树。

有向树:有向图中一顶点入度为0其余顶点入度为1。

森林:一个有向图由若干棵有向树构成生成森林。

图的表示方法

图可以用邻接矩阵和邻接表表示

比如说,下面的图

图论专栏一《图的基础知识》,数据结构与算法,图论

邻接矩阵可以表示为:

  A B C D
A 0 1 1 0
B 1 0 0 1 
C 1 0 0 1
D 0 1 1 0

邻接表可以表示为:

A -> B -> C
B -> A -> D
C -> A -> D
D -> B -> C

有向图的例子:

graph LR
    A--->B
    A--->C
    B--->D
    C--->D

邻接矩阵可以表示为:

    A  B  C  D
A  0  1  1   0
B  0  0  0   1
C  0  0  0   1
D  0  0  0   0

邻接表可以表示为:

A - B - C
B - D
C - D
D - empty

图的存储结构

邻接矩阵

邻接矩阵:用两个数组,一个数组保存顶点集,一个数组保存边集。

无向图

无向图的邻接矩阵如图

图论专栏一《图的基础知识》,数据结构与算法,图论

代码示例

我们先将表示顶点和边的类定义出来

假设顶点的类型为 Vertex

class Vertex {
    int value;
    // 其他顶点属性
}

假设边的类型为 Edge

class Edge {
    int startVertexId;
    int endVertexId;
    // 其他边属性
}
class Graph {
    Vertex[] vertices;
    Edge[] edges;
    int[][] adjacencyMatrix;

    public Graph(Vertex[] vertices, Edge[] edges) {
        this.vertices = vertices;
        this.edges = edges;
        this.adjacencyMatrix = new int[vertices.length][vertices.length];

        // 初始化邻接矩阵,将相应位置设为 1 表示边的连接关系
        for (Edge edge : edges) {
            adjacencyMatrix[edge.startVertexId][edge.endVertexId] = 1;
            // 如果是无向图还需要设置对称位置
            adjacencyMatrix[edge.endVertexId][edge.startVertexId] = 1;
        }
    }
}
有向图

有向图的邻接矩阵如图

图论专栏一《图的基础知识》,数据结构与算法,图论

代码示例

class Digraph {
    Vertex[] vertices;
    Edge[] edges;
    int[][] adjacencyMatrix;

    public Digraph(Vertex[] vertices, Edge[] edges) {
        this.vertices = vertices;
        this.edges = edges;
        this.adjacencyMatrix = new int[vertices.length][vertices.length];

        // 初始化邻接矩阵,将相应位置设为 1 表示边的连接关系
        for (Edge edge : edges) {
            adjacencyMatrix[edge.startVertexId][edge.endVertexId] = 1;
        }
    }
}

邻接表

邻接表:数组与链表相结合的存储方法。

邻接表表示法(链式)表示如下图:

图论专栏一《图的基础知识》,数据结构与算法,图论

  • 顶点: 按编号顺序将顶点数据存储在一维数组中。
  • 关联同一顶点的边: 用线性链表存储。
  • 如果有边\弧的信息,还可以在表结点中增加一项,

图论专栏一《图的基础知识》,数据结构与算法,图论

无向图

无向图的邻接表如下图:

图论专栏一《图的基础知识》,数据结构与算法,图论

特点:

  • 邻接表不唯一
  • 若无向图中有n个顶点、e条边,则其邻接表需要n个头结点和2e个表结点。适宜存储稀疏图。
  • 无向图中顶点vi的度为第i个单链表中的结点数
     

代码示例

import java.util.ArrayList;
import java.util.List;

class Graph {
    int numVertices;
    List<List<Integer>> adjacencyList;

    public Graph(int numVertices) {
        this.numVertices = numVertices;
        this.adjacencyList = new ArrayList<>(numVertices);

        // 初始化邻接表
        for (int i = 0; i < numVertices; i++) {
            adjacencyList.add(new ArrayList<>());
        }
    }

    public void addEdge(int src, int dest) {
        // 添加双向边的连接关系
        adjacencyList.get(src).add(dest);
        adjacencyList.get(dest).add(src);
    }
}
有向图

图论专栏一《图的基础知识》,数据结构与算法,图论

特点:

  • 顶点vi的出度为第i个单链表中的结点个数。
  • 顶点vi的入度为整个单链表中邻接点域值是i-1的结点个数。
  • 找出度易,找入度难

逆邻接表:

图论专栏一《图的基础知识》,数据结构与算法,图论

逆邻接表特点:

  • 顶点vi​的入度为第i个单链表中的结点个数。
  • 顶点vi的出度为整个单链表中邻接点域值是i-1的结点个数。
  • 找入度易,找出度难。

当邻接表的存储结构形成后,图便唯一确定。

代码示例:

import java.util.ArrayList;
import java.util.List;

class Digraph {
    int numVertices;
    List<List<Integer>> adjacencyList;

    public Digraph(int numVertices) {
        this.numVertices = numVertices;
        this.adjacencyList = new ArrayList<>(numVertices);

        // 初始化邻接表
        for (int i = 0; i < numVertices; i++) {
            adjacencyList.add(new ArrayList<>());
        }
    }

    public void addEdge(int src, int dest) {
        // 添加单向边的连接关系
        adjacencyList.get(src).add(dest);
    }
}

图的遍历

广度优先遍历(BFS)

广度优先遍历(Breadth First Search),又称为广度优先搜索,简称BFS。是一种分层的查找过程,每向前走一步可能访问一批顶点,不像深度优先搜索那样有往回退的情况,因此它不是一个递归的算法。为了实现逐层的访问,算法必须借助一个辅助队列,以记忆正在访问的顶点的下一层顶点。
其实他本意就是,先遍历一个节点,然后遍历那个节点所连接的的周边节点,之后再一个结点一个结点的往外遍历,重复循环。

下面举个例子:

图论专栏一《图的基础知识》,数据结构与算法,图论

这张图,我们设从“3”开始遍历,运用广度优先的方法,那么我们所得到的遍历顺序为3,2,3,4,5,1

深度优先遍历(DFS)

所谓DFS,就是从起点开始,找准一个方向直到走不了为止,然后再原路返回,再找到一个能走的地方继续走的思路。

下面举个例子:

图论专栏一《图的基础知识》,数据结构与算法,图论

遍历顺序为:1,2,4,7,8,5,3,6

这里这两种算法,我只是概述一下,后面我还会写两篇博文来专门讲这两种遍历方式

上面差不多就是刷图论的题所需要具备的图的基础知识了,后续我会继续更新一些我在刷图论题的一些体会。文章来源地址https://www.toymoban.com/news/detail-778791.html

到了这里,关于图论专栏一《图的基础知识》的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包赞助服务器费用

相关文章

  • 数据结构基础知识、名词概述

    数据结构基础知识、名词概述

    整体知识框架 1.1.1 数据、 数据元素、 数据项和数据对象 数据 (Data) 是客观事物的符号表示,是所有 能输入到计算机中并被计算机程序处理的符号 的总称 。如数学计算中用到的整数和实数,文本编辑中用到的字符串,多媒体程序处理的图形、 图像、声音及动画等通过特殊编

    2024年02月15日
    浏览(12)
  • 数据结构—基础知识:哈夫曼树

    数据结构—基础知识:哈夫曼树

    哈夫曼(Huffman)树 又称最优树,是一类带权路径长度最短的树,在实际中有广泛的用途。哈夫曼树的定义,涉及路径、路径长度、权等概念,下面先给出这些概念的定义,然后再介绍哈夫曼树 路径 :从树中一个结点到另一个结点之间的分支构成这两个结点之间的路径。 路

    2024年02月21日
    浏览(8)
  • 【数据结构】——二叉树的基础知识

    【数据结构】——二叉树的基础知识

    数的分类 二叉树、多叉树 数的概念 树是一种 非线性 的数据结构,它是由n(n=0)个有限节点组成一个具有层次关系的集合。 把它叫做树的原因是它看起来像一颗倒挂的树,也就是说它是跟朝上,而叶朝下的。 有一个特殊的节点,称为根节点,这个节点没有前驱节点。 除根节

    2024年02月07日
    浏览(20)
  • 数据结构—基础知识(15):哈夫曼树

    数据结构—基础知识(15):哈夫曼树

    哈夫曼(Huffman)树 又称最优树,是一类带权路径长度最短的树,在实际中有广泛的用途。哈夫曼树的定义,涉及路径、路径长度、权等概念,下面先给出这些概念的定义,然后再介绍哈夫曼树 路径 :从树中一个结点到另一个结点之间的分支构成这两个结点之间的路径。 路

    2024年02月19日
    浏览(13)
  • 数据结构—基础知识(12):二叉树算法补充

    复制二叉树 【算法步骤】 如果是空树,递归结束,否则进行以下操作: 申请一个新结点空间,复制根结点; 递归复制左子树; 递归复制右子树。 计算二叉树的深度 【算法步骤】 如果是空树,递归结束,深度为0,否则进行以下操作: 递归计算左子树的深度记为m; 递归计

    2024年01月25日
    浏览(12)
  • 数据结构—基础知识(11):二叉树的遍历

    数据结构—基础知识(11):二叉树的遍历

    二叉树的遍历 是指按某条搜索路径访问树中每个结点,使得每个结点均被访问一次,而且仅被访问一次。由于二叉树是一种非线性结构,每个结点都可能有两棵子树,因而需要寻找一种规律,以便使二叉树上的结点能排列在一个线性队列上,进而便于遍历。 由二叉树的递归

    2024年02月19日
    浏览(11)
  • 【数据结构】C--单链表(小白入门基础知识)

    【数据结构】C--单链表(小白入门基础知识)

    前段时间写了一篇关于顺序表的博客,http://t.csdn.cn/0gCRp 顺序表在某些时候存在着一些不可避免的缺点: 问题: 1. 中间 / 头部的插入删除,时间复杂度为 O(N) 2. 增容需要申请新空间,拷贝数据,释放旧空间。会有不小的消耗。 3. 增容一般是呈 2 倍的增长,势必会有一定的空间

    2024年02月16日
    浏览(11)
  • 【数据结构】树的基础知识及三种存储结构

    【数据结构】树的基础知识及三种存储结构

    💐 🌸 🌷 🍀 🌹 🌻 🌺 🍁 🍃 🍂 🌿 🍄🍝 🍛 🍤 📃 个人主页 :阿然成长日记 👈点击可跳转 📆 个人专栏: 🔹数据结构与算法🔹C语言进阶 🚩 不能则学,不知则问,耻于问人,决无长进 🍭 🍯 🍎 🍏 🍊 🍋 🍒 🍇 🍉 🍓 🍑 🍈 🍌 🍐 🍍 把它叫做树是因为它

    2024年02月09日
    浏览(15)
  • 【JavaEE基础学习打卡00】该专栏知识大纲在这里!

    【JavaEE基础学习打卡00】该专栏知识大纲在这里!

    📜 本系列教程适用于 Java Web 初学者、爱好者,小白白。我们的天赋并不高,可贵在努力,坚持不放弃。坚信量最终引发质变,厚积薄发。 🚀 文中白话居多,尽量以小白视角呈现,帮助大家快速入门。 🎅 我是 蜗牛老师 ,之前网名是 Ongoing蜗牛 ,人如其名,干啥都慢,所

    2024年02月10日
    浏览(9)
  • 快速指南:原型图的基础知识解析

    快速指南:原型图的基础知识解析

    一般来说,原型图是指用于呈现软件产品功能界面、交互设计和逻辑过程的设计项目。您还可以将原型图理解为软件的草图,可以通过原型图清楚地说明软件的功能、几个界面、每个功能的功能以及每个界面的流通关系。 原型图中的组成内容不是固定的,它可以相当完美和复

    2024年02月03日
    浏览(10)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包