转换矩阵、平移矩阵、旋转矩阵关系以及python实现旋转矩阵、四元数、欧拉角之间转换

这篇具有很好参考价值的文章主要介绍了转换矩阵、平移矩阵、旋转矩阵关系以及python实现旋转矩阵、四元数、欧拉角之间转换。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。


由于在平时总是或多或少的遇到平移旋转的问题,每次都是现查资料,然后查了忘,忘了继续查,这次弄明白之后干脆写一篇文章,给人方便同时于己方便,后续如有扩充或变动也方便添加。

1. 转换矩阵、平移矩阵、旋转矩阵之间的关系

假设有两个向量 a 1 = ( x 1 , y 1 , z 1 ) a_1 = (x_1, y_1, z_1) a1=(x1,y1,z1) a 2 = ( x 2 , y 2 , z 2 ) a_2 = (x_2, y_2, z_2) a2=(x2,y2,z2),它们的转换关系为:

a 1 = R ∗ a 2 + T a_1 = R * a_2 + T a1=Ra2+T
这里 R R R就是它的旋转矩阵 T T T就是它的平移矩阵。使用齐次方式表示如下:

( a 1 1 ) = ( R T 0 1 ) ∗ ( a 2 1 ) \begin{pmatrix} a_1\\ 1 \end{pmatrix}= \begin{pmatrix} R&T\\ 0&1 \end{pmatrix}* \begin{pmatrix} a_2\\1 \end{pmatrix} (a11)=(R0T1)(a21)
使用元素值替换后,表示如下:
( x 1 y 1 z 1 1 ) = ( r 11 r 12 r 13 t 1 r 21 r 22 r 23 t 2 r 31 r 32 r 33 t 3 0 0 0 1 ) ∗ ( x 2 y 3 z 2 1 ) \begin{pmatrix} x_1\\y_1\\z_1\\1 \end{pmatrix}= \begin{pmatrix} r_{11}&r_{12}&r_{13}&t_{1}\\ r_{21}&r_{22}&r_{23}&t_{2}\\ r_{31}&r_{32}&r_{33}&t_{3}\\ 0&0&0&1 \end{pmatrix}* \begin{pmatrix} x_2\\y_3\\z_2\\1 \end{pmatrix} x1y1z11 = r11r21r310r12r22r320r13r23r330t1t2t31 x2y3z21
在仿射变换中的转换矩阵表示先线性变换再平移。在这里转换矩阵表示如下:
转换矩阵 = ( r 11 r 12 r 13 t 1 r 21 r 22 r 23 t 2 r 31 r 32 r 33 t 3 0 0 0 1 ) 转换矩阵= \begin{pmatrix} r_{11}&r_{12}&r_{13}&t_{1}\\ r_{21}&r_{22}&r_{23}&t_{2}\\ r_{31}&r_{32}&r_{33}&t_{3}\\ 0&0&0&1 \end{pmatrix} 转换矩阵= r11r21r310r12r22r320r13r23r330t1t2t31
平移矩阵表示如下:
平移矩阵 T = ( t 1 t 2 t 3 ) 平移矩阵T=\begin{pmatrix} t_{1}\\ t_{2}\\ t_{3}\\ \end{pmatrix} 平移矩阵T= t1t2t3
旋转矩阵表示如下:
旋转矩阵 R = ( r 11 r 12 r 13 r 21 r 22 r 23 r 31 r 32 r 33 ) 旋转矩阵R=\begin{pmatrix} r_{11}&r_{12}&r_{13}\\ r_{21}&r_{22}&r_{23}\\ r_{31}&r_{32}&r_{33} \end{pmatrix} 旋转矩阵R= r11r21r31r12r22r32r13r23r33

2. 缩放变换、平移变换和旋转变换

如果理解以上知识点之后,缩放变换、平移变换和旋转变换的特殊情况也迎刃而解。

  • 缩放变换

缩放变换只是在尺度上进行改变,所以它的变换形式如下:

旋转平移矩阵,数学理论与工具,python,变换矩阵,旋转矩阵,欧拉角四元数,平移矩阵

  • 平移变换

平移变换的时候,角度不发生改变,也就是旋转矩阵R为单位矩阵,所以它的变换形式如下:

旋转平移矩阵,数学理论与工具,python,变换矩阵,旋转矩阵,欧拉角四元数,平移矩阵

  • 旋转变换

当空间内的物体绕着 x 轴,y 轴或者 z 轴旋转的时候,变换矩阵为:

旋转平移矩阵,数学理论与工具,python,变换矩阵,旋转矩阵,欧拉角四元数,平移矩阵
对于一般性的旋转问题,可以用简单的旋转描述复杂的旋转。用 x 轴,y 轴和 z 轴上的旋转来定义旋转:

旋转平移矩阵,数学理论与工具,python,变换矩阵,旋转矩阵,欧拉角四元数,平移矩阵

这三个角就被称作欧拉角(Euler angles)。

2. python实现旋转矩阵、四元数、欧拉角互相转化

在应用中,我们往往会遇到旋转矩阵、四元数和欧拉角之间的互相转换,在这里,我们只使用python代码来实现它们之间互相转换。文章来源地址https://www.toymoban.com/news/detail-778904.html

from scipy.spatial.transform import Rotation as R

def quaternion2euler(quaternion):
    r = R.from_quat(quaternion)
    euler = r.as_euler('xyz', degrees=True)
    return euler

def euler2quaternion(euler):
    r = R.from_euler('xyz', euler, degrees=True)
    quaternion = r.as_quat()
    return quaternion

def euler2rotation(euler):
    r = R.from_euler('xyz', euler, degrees=True)
    rotation_matrix = r.as_matrix()
    return rotation_matrix

def quaternion2rotation_matrix(quaternion):
    r = R.from_quat(quaternion)
    rotation_matrix = r.as_matrix()
    return rotation_matrix

def rotation_matrix2euler(rotation_matrix):
    r = R.from_matrix(rotation_matrix)
    euler = r.as_euler('xyz', degrees=True)
    return euler
    

def rotation_matrix2quaternion(rotation_matrix):
    r = R.from_matrix(rotation_matrix)
    quaternion = r.as_quat()
    return quaternion

if __name__ == '__main__':
    # 四元数=>欧拉角
    quaternion = [0.71934025092983234, -1.876085535681999e-06, -3.274841213980097e-08, -0.69465790385533299]
    euler = quaternion2euler(quaternion) # [-9.20000743e+01  1.52039496e-04 -1.52039496e-04]
    print(f'euler: {euler}')
    
    # 四元数=>旋转矩阵
    rotation_matrix = quaternion2rotation_matrix(quaternion)
    print(f'rotation_matrix: {rotation_matrix}')
    
    # 欧拉角=>四元数
    quaternion = euler2quaternion(euler)
    print(f'quaternion: {quaternion}') # [-7.19340251e-01  1.87608554e-06  3.27484122e-08  6.94657904e-01]
    
    # 欧拉角=>旋转矩阵
    rotation_matrix = euler2rotation(euler)
    print(f'rotation_matrix: {rotation_matrix}')
    
    # 旋转矩阵=>欧拉角
    euler = rotation_matrix2euler(rotation_matrix)
    print(f'euler: {euler}')
    
    # 旋转矩阵=>四元数
    quaternion = rotation_matrix2quaternion(rotation_matrix)
    print(f'quaternion: {quaternion}')

到了这里,关于转换矩阵、平移矩阵、旋转矩阵关系以及python实现旋转矩阵、四元数、欧拉角之间转换的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【数理知识】三维空间旋转矩阵的欧拉角表示法,四元数表示法,两者之间的转换,Matlab 代码实现

    序号 内容 1 【数理知识】自由度 degree of freedom 及自由度的计算方法 2 【数理知识】刚体 rigid body 及刚体的运动 3 【数理知识】刚体基本运动,平动,转动 4 【数理知识】向量数乘,内积,外积,matlab代码实现 5 【数理知识】最小二乘法,从线性回归出发,数值举例并用最小

    2024年02月12日
    浏览(48)
  • 【Eigen库使用】角轴、旋转矩阵、欧拉角、四元数转换

    在slam中经常用到的四种描述机器人orientation的变量,他们之间可以相互转化,使用Eigen库可以很容易的做到这一点, 需要特别关注的是:欧拉角与其余量之间的转换关系 : 1)首先要明确的是, 必须要明确欧拉角的旋转次序 ,你可以选择RPY、YPR等方式,在相同的orientation下,

    2024年01月18日
    浏览(47)
  • 持之以恒(一)位姿转换:姿态 / 四元数 / 旋转矩阵 / 欧拉角 及 位姿矩阵

    姿态的几种表示形式, 姿态角 、 四元数 、 欧拉角 、 旋转矩阵 、 位姿矩阵 。 姿态 说明 表示形式 Eigen 姿态角 指的是机体坐标系与地理坐标系的夹角,即旋转向量 rx,ry,rz Eigen::Vector3f(Degrees) 四元数 四元素不存在万向节死锁问题、利用球面插值可以获得均匀的转速 w,x,y,z

    2024年02月15日
    浏览(51)
  • 2D坐标系下的点的转换矩阵(平移、缩放、旋转、错切)

    1. 平移 (Translation) 在2D空间中,我们经常需要将一个点平移到另一个位置。假设空间中的一点 P ( x , y ) P(x,y) P ( x , y ) ;将其向 x , y x, y x , y 方向分别平移 t x t_x t x ​ , t y t_y t y ​ , 假设平移后点的坐标为 ( x ′ , y ′ ) (x\\\',y\\\') ( x ′ , y ′ ) ,则上述点的平移操作可以归纳为

    2024年02月15日
    浏览(38)
  • 使用Matlab机器人工具箱完成四元数到旋转矩阵的转换,附程序

    在进行机械臂操作或写论文时,经常需要进行四元数、旋转矩阵、欧拉角等的转换。 此时,我们利用matlab里的机器人工具箱(Peter 开发)内置的函数就可完成,具体程序如下: 环境:Matlab2020b+robotics toolbox(安装方法在前几期文章里有) 此时运行matlab可得以下结果: 重要注

    2024年02月13日
    浏览(52)
  • 旋转矩阵R、平移向量t以及变换矩阵T的定义及其下标的含义

    首先,只考虑旋转。 假设坐标系1: { X 1 , Y 1 , Z 1 } {X_1, Y_1, Z_1} { X 1 ​ , Y 1 ​ , Z 1 ​ } 经过 纯旋转 之后得到坐标系2: { X 2 , Y 2 , Z 2 } {X_2, Y_2, Z_2} { X 2 ​ , Y 2 ​ , Z 2 ​ } (如上图),其中坐标系1对应的单位正交基为 ( e 1 , e 2 , e 3 ) left(e_{1}, e_{2}, e_{3}right) ( e 1 ​ , e

    2023年04月23日
    浏览(48)
  • 四元数,旋转矩阵,欧拉角互转(python)

    运行代码之前需要安装pyquaternion和scipy。 pip install pyquaternion pip install scipy 代码之前放下面,main函数有使用的方式

    2024年02月12日
    浏览(42)
  • ABB机器人欧拉角与四元数的相互转化以及旋转矩阵的求法

    做项目时用到ABB机器人,直接通过ABB内置的函数可以轻松实现四元数读数与欧拉角的相互转化。但实际项目需要从示教器读出相关位置并自行计算,尤其需要计算旋转矩阵。 本文以 ABB IRB120机器人 (不确定其他机器人是否与ABB机器人一致)为例如下姿态为例来描述上述几个量

    2024年02月03日
    浏览(52)
  • COLMAP中将旋转矩阵转为四元数的实现

          instant-ngp中执行scripts/colmap2nerf.py时,在colmap_text目录下会生成cameras.txt、images.txt、points3D.txt三个文件:       1.cameras.txt:       (1).该文件包含数据集中所有重构相机(all reconstructed cameras)的内在参数(intrinsic parameters),每个相机占用一行;       (2).参数的长度是可变的,

    2024年02月07日
    浏览(40)
  • 欧拉角,四元数和旋转矩阵互转代码【python版】

    欧拉角以 Roll、Pitch、Yaw 的顺序表示 四元数以[ q w q_w q w ​ , q x q_x q x ​ , q y q_y q y ​ , q z q_z q z ​ ]的顺序表示 代码包括了 欧拉角与四元数互转 , 旋转矩阵与四元数互转 , 欧拉角与旋转矩阵互转 ,输入参数均为 np.array 形式 代码内置了角度制和弧度制😃😃 当时因为这块

    2023年04月22日
    浏览(50)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包