heanauOJ 1083: 超简单的构造上三角矩阵

这篇具有很好参考价值的文章主要介绍了heanauOJ 1083: 超简单的构造上三角矩阵。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

题目描述

 上三角形矩阵是指主对角线以下(不包含主对角线)元素全为0的矩阵。
 现输入一个数字n,显然该矩阵中含有n * n个元素, 若满足上三角矩阵, 则含有(n * n + n) / 2个非0元素。
 请将1 ~ (n * n + n) / 2的数字按顺序填入该上三角矩阵。
 顺序:先按行, 若行相同则按列。

输入

 输入一个n(1 ≤ 100)代表该上三角形矩阵的大小。

输出

 输出n行, 每行n个元素。文章来源地址https://www.toymoban.com/news/detail-779079.html

#include <stdio.h>
int main(){
    int n,a=1,b,c,d;
    scanf("%d",&n);
    for (int i = 0; i < n ; ++i) {
        for (int j = 0; j < i ; ++j) {
            printf("0 ");
        }
        for (int j = i; j < n ; ++j) {
            printf("%d ",a);
            a++;
        }
        printf("\n");
    }
}

到了这里,关于heanauOJ 1083: 超简单的构造上三角矩阵的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 在Python和C++中使用Bowyer-Watson算法的简单Delaunay三角剖分库

    Delaunay三角剖分是一种常用的计算几何算法,它在许多领域都有广泛的应用,包括计算机图形学、地理信息系统(GIS)、数值模拟等。在这篇文章中,我们将介绍如何在Python和C++中使用Bowyer-Watson算法实现一个简单的Delaunay三角剖分库。 Delaunay三角剖分是一种特殊的三角剖分,

    2024年02月13日
    浏览(40)
  • 线性代数(4):伴随矩阵、逆矩阵和矩阵的秩

             A 为一个n阶矩阵,行列式 | A | 的每个元素a ij 的代数余子式Aij组成的矩阵叫做伴随矩阵,记作 A* ;         a.  如果 A 矩阵可逆,A* = | A | A^-1         b.  | A | = | A |^(n-1)         c.  ( kA )* = k^(n-1) A*         a.  若矩阵的行列式结果值不等于 0 ,那么这个矩阵就是

    2024年02月08日
    浏览(60)
  • 0203逆矩阵-矩阵及其运算-线性代数

    定义7 对于 n n n 阶矩阵A,如果有一个 n n n 阶矩阵B,使 A B = B A = E AB=BA=E A B = B A = E 则说矩阵A是可逆的,并把矩阵B称为A的逆矩阵,简称逆阵。 定理1 若矩阵A可逆,则 ∣ A ∣ ≠ 0 vert Avert not = 0 ∣ A ∣  = 0 证明: A 可逆,即有 A − 1 ,使得 A A − 1 = E ∣ A A − 1 ∣ = ∣ A

    2024年04月13日
    浏览(56)
  • 【线性代数与矩阵论】Jordan型矩阵

    2023年11月3日 #algebra 在对向量做线性变换时,向量空间的某个向量的方向不发生改变,而只是在其方向上进行拉伸,则该向量是线性变换的特征向量,其在变换中被拉伸的倍数为该特征向量的特征值(特征根)。 矩阵的相同特征值有其对应的代数重数与几何重数,相同特征值

    2024年02月04日
    浏览(47)
  • 线性代数笔记11--矩阵空间、秩1矩阵

    1. 矩阵空间 所有的 3 × 3 3 times 3 3 × 3 矩阵构成的空间 M M M 。 考虑空间 M M M 的子空间 上三角矩阵 对称矩阵 对角矩阵 3 x 3 3x3 3 x 3 矩阵空间的基: [ 1 0 0 0 0 0 0 0 0 ] [ 0 1 0 0 0 0 0 0 0 ] [ 0 0 1 0 0 0 0 0 0 ] [ 0 0 0 1 0 0 0 0 0 ] [ 0 0 0 0 1 0 0 0 0 ] [ 0 0 0 0 0 1 0 0 0 ] [ 0 0 0 0 0 0 1 0 0 ] [ 0 0 0 0 0 0

    2024年03月10日
    浏览(47)
  • 0202矩阵的运算-矩阵及其运算-线性代数

    定义2 设有两个 m × n mtimes n m × n 橘子 A = ( a i j ) 和 B = ( b i j ) A=(a_{ij})和B=(b_{ij}) A = ( a ij ​ ) 和 B = ( b ij ​ ) ,那么矩阵A与B的和记为A+B,规定为 A + B = ( a 11 + b 11 a 12 + b 12 ⋯ a 1 n + b 1 n a 21 + b 21 a 22 + b 22 ⋯ a 2 n + b 2 n ⋮ ⋮ ⋮ a m 1 + b m 1 a m 2 + b m 2 ⋯ a m n + b m n ) A+B=begin{pmatr

    2024年04月25日
    浏览(47)
  • 0205矩阵分块法-矩阵及其运算-线性代数

    1 分块矩阵的定义 将矩阵A用若干条纵线和横线分成许多个小矩阵,每一个小矩阵称为A的子快,以子块为元素的形式上的矩阵称为分块矩阵。 2 分块矩阵的运算(性质) 设矩阵A与B的行数相同,列数相同,采用相同的分块法,有 A = ( A 11 ⋯ A 1 r ⋮ ⋮ A s 1 ⋯ A s r ) , B = ( B 11 ⋯

    2024年04月26日
    浏览(37)
  • 线性代数感悟之6 单位矩阵和初等矩阵

    最近在看 liuyubobobo 的  线性代数 课,感觉很妙,有些感悟记录一下~~~ ​  单位矩阵的特点:从左上角到右下角的对角线(称为主对角线)上的元素均为1。 使用行视角,将单位矩阵看成一个变化矩阵。 ​‘  那么 单位矩阵 第1行的作用: 将1行的数据保持不变,第2行,和

    2023年04月10日
    浏览(39)
  • 【线性代数】从矩阵分块的角度理解矩阵乘法

    概念: 例: 1. 分块矩阵计算的数学步骤 使用Numpy计算例1 按列分块 按行分块 分块后的计算公式 矩阵分块法提供了行数和列数较多的矩阵相乘的一种计算方法,以此来简化矩阵相乘的运算次数; 按行列分块将矩阵A分为n个列向量和m个行向量,利用矩阵乘法的定义,殊途同归

    2024年02月13日
    浏览(61)
  • 线性代数|例题:利用伴随矩阵求逆矩阵

    【例1:同济线代习题二 9.1】求下列矩阵的逆矩阵: A = ( 1 2 2 5 ) boldsymbol{A} = begin{pmatrix} 1 2 \\\\ 2 5 end{pmatrix} A = ( 1 2 ​ 2 5 ​ ) 解答 因为 ∣ A ∣ = 5 − 4 = 1 ≠ 0 |boldsymbol{A}| = 5 - 4 = 1 ne 0 ∣ A ∣ = 5 − 4 = 1  = 0 ,所以 A boldsymbol{A} A 可逆。有 A − 1 = 1 ∣ A ∣ A ∗ = ( 5 − 2 −

    2024年02月08日
    浏览(40)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包