STM32在进行CAN总线多节点通信时,同时发数据会一直收不到某设备数据的问题及解决

这篇具有很好参考价值的文章主要介绍了STM32在进行CAN总线多节点通信时,同时发数据会一直收不到某设备数据的问题及解决。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

遇到的问题

问题的发现

最近在开发Canopen项目中,进行一主多从设备通信时,主站发送同步帧,两个从站往往只有帧ID优先级高的设备可以让主站接收到数据,而另一个从设备的数据往往接收不到。但当我关闭其中一个can从设备,另一个就可以和主站设备通信正常。经过排查发现,是由于Can的冲突解决机制的问题。
在CAN多机通信中,两个设备同时发送数据,帧ID优先级高的CAN设备会“抢占”总线,而另外的设备需要选择冲突解决策略。

CAN总线的一般冲突机制

  • 非破坏性抢占机制(Non-Destructive Arbitration): CAN 使用一种非破坏性的仲裁机制,这意味着当两个节点同时发送消息时,通过识别消息标识符中的位的值来确定哪个消息具有更高的优先级。具体来说,CAN总线上的每个节点都会根据其消息标识符的比特值来判断是否能够“抢占”总线。
  • 标识符比较: 在CAN总线上,每个节点在发送消息之前会监测总线上的信号电平。如果一个节点正在发送1,而另一个节点正在发送0,那么正在发送1的节点会发现冲突,并会停止发送消息。这种标识符比较机制有助于节点在发送消息时检测冲突并进行冲突解决。
  • 仲裁场(Arbitration Field): CAN消息包含一个仲裁场,它包含消息标识符。在这个字段中,CAN节点通过比较消息标识符中的位来决定哪个节点具有更高的优先级。较低优先级的节点将会自动停止发送,并等待较高优先级的节点完成其消息的发送。
  • 回退机制: 如果多个节点尝试同时发送消息,冲突解决后,较低优先级的节点会等待一段随机时间后重新尝试发送消息。这种回退机制有助于减少冲突的再次发生,提高总线的效率。

总的来说,CAN总线的冲突机制通过使用非破坏性的仲裁和标识符比较,以及回退机制,确保了多个节点之间的有序通信,使得总线上的消息能够按照优先级顺序进行传输。这种设计使得CAN总线非常适用于要求实时性和可靠性的应用,例如汽车控制系统。

STM32中的CAN冲突机制

我们在进行CAN的多机通信时,往往希望不会丢帧。遇到CAN总线冲突时,受阻的CAN从设备进行自动回传是我们需要的。而打开冲突回传只需要在CAN初始时对AutoRetransmission 进行使能。

hcan1.Init.AutoRetransmission = ENABLE;

AutoRetransmission 是用于配置CAN控制器的自动重传(Automatic Retransmission)功能。在CAN通信中,当节点发送消息但未收到确认时,可以选择是否自动进行重传。当 AutoRetransmission 被启用(ENABLE)时,如果CAN控制器未收到确认,则会自动重传先前的消息。这有助于提高消息的可靠性,特别是在有可能发生干扰或冲突的环境中。当 AutoRetransmission 被禁用(DISABLE)时,如果发送的消息未收到确认,控制器将不会自动进行重传。在这种情况下,需要由软件来处理重传逻辑,开发者可以通过程序来控制何时以及如何进行重传。
can总线节点同时发送数据,STM32入门到精通(嵌入式开发基础),stm32,网络,嵌入式硬件
公众号:物联网知识
抖音号:物联网知识文章来源地址https://www.toymoban.com/news/detail-779222.html

到了这里,关于STM32在进行CAN总线多节点通信时,同时发数据会一直收不到某设备数据的问题及解决的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • CAN总线基础详解以及stm32的CAN控制器

    目录 CAN简介 CAN总线拓扑图 CAN总线特定 CAN应用场景 CAN的物理层 CAN的协议层 CAN数据帧介绍 CAN位时序介绍 数据同步过程 硬件同步 再同步 CAN总线仲裁 stm32的CAN控制器 CAN控制器介绍 CAN控制器模式 CAN控制器框图 接收过滤器 CAN控制器波特率计算 CAN相关寄存器 CAN主控制寄存器(

    2024年01月25日
    浏览(49)
  • STM32CubeIDE开发(二十六), STM32的CAN总线开发要点

    目录 一、CAN总线简介         1.1 CAN概述         1.2 CAN总线较其他串行通信优势         1.3 CAN总线通信          1.4 报文种类及格式          1.5 CAN应用 二、CAN工程创建及配置         2.1 工程设计及原理框图          2.2 工程创建接配置 三、代码设计

    2023年04月15日
    浏览(50)
  • CAN总线学习笔记 | STM32CubeMX配置CAN环回测试

    CAN基础知识介绍文中介绍了CAN协议的基础知识,以及STM32F4芯片的CAN控制器相关知识,下面将通过实例,利用STM32CubeMX图形化配置工具,来实现CAN通讯的环回测试 CAN是挂载在APB1总线上,设置PCLK1时钟频率到最大45MHz 激活CAN1,配置位时序参数,其他基本参数以及工作模式(此处

    2024年02月11日
    浏览(37)
  • STM32基于CAN总线协议控制步进电机

    如上图所示,实现了以下功能: 1.两块stm32单片机通过CAN控制器与收发器进行半双工通信; 2.stm32主机通过检测按键,切换不同的模式,将不同模式的case值发送给stm32从机; 3.stm32从机根据收到的case值,控制步进电机进行不同的运动操作; 4.OLED用于显示收发内容与按键状态等

    2024年01月19日
    浏览(51)
  • STM32+收发器实现CAN和485总线

    RS485总线是一种常见的(Recommended Standard)串行总线标准(485是它的标识号),采用平衡发送与差分接收的方式,因此具有抑制共模干扰的能力。CAN是控制器局域网络(Controller Area Network, CAN)的简称,是一种能够实现分布式实时控制的串行通信网络,属于CSMA(多路载波侦听)/CD(冲突检测

    2024年02月05日
    浏览(52)
  • CAN总线(五)STM32的CAN波特率设置方法(完整版)

     ①HSI是高速内部时钟,RC振荡器,频率为8MHz。   ②HSE是高速外部时钟,可接石英/陶瓷谐振器,或者接外部时钟源,频率范围为4MHz~16MHz。 ③LSI是低速内部时钟,RC振荡器,频率为40kHz。 ④LSE是低速外部时钟,接频率为32.768kHz的石英晶体。 ⑤PLL为锁相环倍频输出,其时钟输入

    2024年02月07日
    浏览(30)
  • STM32 CAN通信自定义数据包多帧连发乱序问题

    can标准帧中每一帧只能传输8字节,而应用中传输一包的内容往往超过8字节,因此需要把一个包拆成多个帧发送,接收端才把收到的多帧重新组装成一个完整的包 在一问一答的两块板间通信,多帧连发是能够按照顺序发送的。但是,在一个主板和多个从板之间轮询一问一答的

    2024年01月17日
    浏览(38)
  • STM32 基础知识(探索者开发板)--159讲 CAN总线

    CAN基础知识:ISO国际标准化的串行通信协议,为了减少线束的数量 a.多主控制  每个设备都可以主动发送数据 b.通信速度较快,通信距离远。最高1Mbps(距离小于40M),最远可达10KM(速率低于5Kbps) c.具有错误检测、错误通知和错误恢复功能 d.故障封闭功能  能发现故障,且可以把故

    2024年01月17日
    浏览(49)
  • 【STM32】标准库与HAL库对照学习教程十四--CAN总线

    STM32全部教程 :【STM32】标准库与HAL库对照学习系列教程大全 本篇介绍如何使用STM32的标准库与HAL库对CAN总线的使用,由于我那块普中的STM32F103ZET6开发板送人了,因此我这边用STM32F103C8最小系统板,进行简单的演示一下功能,最主要的还是需要理解CAN总线的原理,在本篇中,

    2024年02月15日
    浏览(46)
  • STM32—CAN通信

    🎀 文章作者:二土电子 🌸 关注文末公众号获取其他资料和工程文件! 🐸 期待大家一起学习交流! CAN全称是Controller Area Network,控制器局域网络,是ISO国际标准化的串行通信协议。CAN是国际上应用最广泛的现场总线之一。CAN通信只有两根信号线,分别是CAN_H和CAN_L,CAN 控制

    2024年02月16日
    浏览(43)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包