π型滤波器 计算_π型滤波电路

这篇具有很好参考价值的文章主要介绍了π型滤波器 计算_π型滤波电路。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

π型滤波器截止频率,硬件设计-基础知识汇总,嵌入式硬件

滤波器在功率和音频电子中常用于滤除不必要的频率。而电路设计中,基于不同应用有着许多不同种类的滤波器,但它们的基本理念都是一致的,那就是移除不必要的信号。所有滤波器都可以被分为两类,有源滤波器和无源滤波器。有源滤波器用到1个或多个有源器件和其它无源器件组成,而无源滤波器则只有无源器件组成。
本文中,我们向大家介绍其中的π滤波器,它在

电源电路设计中非常适用。π型滤波器
π滤波器是无源滤波器,是由3个器件组成,而非传统的两器件组成的无源滤波器。它的结构有点像希腊字母π,所以因此得名π滤波器。π型滤波器用于低通滤波
π滤波器是一种出色的低通滤波器,与传统的LC滤波器有很大不同。当π滤波器用于低通滤波时,输出稳定且K值固定。
使用π滤波器实现的低通滤波器很简单。π滤波器电路由两个电容并联,再与一个电感串联组成如下的π形状的电路。

π型滤波器截止频率,硬件设计-基础知识汇总,嵌入式硬件

如上图所示,两个电容接地的同时中间与一个电感串联。因为这是一个低通滤波器,它在高频下产生高阻抗,在低频下产生低阻抗。因此,常用于传输线路中隔绝不必要的高频信号。
π滤波器中每个元件的值的计算可以由以下公式得出,方便你设计应用
截止频率fc=/1/ᴫ(LC)1/2
电容值 C=1/Z0 ᴫfc
电感值 L1=Z0/ ᴫfc
其中Z0为阻抗π型滤波器用于高通滤波
π滤波器同样可以被配置成高通滤波器。这种配置下,滤波器会隔绝低频信号,通过高频信号。而且同样由两种无源器件组成,两个电感和一个电容。
在高通滤波下,π滤波器电路的组合方式有些不同,具体如下图。

π型滤波器截止频率,硬件设计-基础知识汇总,嵌入式硬件

在该配置下,其参数计算参照以下公式。
截止频率 fc= 1/4ᴫ(LC)1/2
电容值 C=1/4Z0ᴫfc
阻抗值 L1=Z0/4ᴫfcπ型滤波器的优点高输出电压
π滤波器的输出电压很高,所以适用于需要高压直流滤波的应用。低纹波系数
若以低通滤波配置来进行直流滤波的话,π滤波器是一种效率很高的滤波器,可以从桥式整流器输出端滤除不必要的交流纹波。电容在交流下阻抗低,但在直流下阻抗高。在RF应用中设计方便
在控制中的RF环境中,需要更高频率的传输,比如GHz级别的宽带,高频π滤波器在PCB中更容易设计。高频π滤波器还会提供比其它半导体滤波器更强大的脉冲免疫。π型滤波器的缺点电感上的电压值升高
与射频设计不同,从π滤波器输出的大电流是不恰当的,因为这股电流必须流经电感。如果负载电流很大的话,那么电感上的电压也会随之变大,这样就需求更加笨重和昂贵的电感。同样,电感上的大电流会致使能量耗散,从而降低效率。需要较大输入电容
π滤波器的另一个问题就是输入电容的值很大。π滤波器输入端需要高容值,这样一来在一些空间受限的应用中成了挑战。同时大电容同样提高了设计的成本。糟糕的电压调节
π滤波器不适用于负载电流不稳定且一直在变化的应用。当负载电流变化大的时候,π滤波器的电压调节很糟糕。这样的应用中更适合L型滤波器。π型滤波器设计的经验在电子电力设计中
π滤波器的layout需要较宽的走线
将π滤波器与供电元件隔离开来尤为重要
输入电容,电感和输出电容的间距要小
输出电容的地线层需要直接与驱动电路相连在射频电路中
RF应用中元器件的选择非常关键。尤其是要注意元器件的精度。
PCB走线的增加会在电路中产生电感。所以电感取值时要考虑到PCB走线的电感。应该用合理的方式来减少杂散电感。
尽可能减少杂散电容。
元件布局要尽可能紧密。
射频应用中的输入与输出适合使用同轴电缆。

参考原文:《π型滤波器 计算_π型滤波电路》文章来源地址https://www.toymoban.com/news/detail-780509.html

到了这里,关于π型滤波器 计算_π型滤波电路的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • LC滤波器设计学习笔记(一)滤波电路入门

    部分摘自《LC滤波器设计与制作》,侵权删。 最近需要学习放大电路和滤波电路,但是由于只在之前做音乐频谱分析仪的时候简单了解过一点点运放,所以也是相当从零开始学习了。 滤波器:主要是从不同频率的成分中提取出特定频率的信号。 有源滤波器:由RC元件与运算放

    2024年02月02日
    浏览(39)
  • 数字IC经典电路(4)——经典滤波器的实现(滤波器简介及Verilog实现)

    数字滤波器一般可以分为两类:有限冲激响应(FIR)滤波器和无限冲激响应(IIR)滤波器。 在Verilog综合方面,通常可以实现四种数字滤波器: 基于时域采样的FIR滤波器(Time Domain Sampling FIR Filter) 快速傅里叶变换(FFT)算法实现的FIR滤波器(FFT-based FIR Filter) 直接IIR滤波器

    2024年02月09日
    浏览(34)
  • labview图形显示正弦曲线信号发生器频率幅值相位数字示波器滤波器频谱分析

    wx供重浩:创享日记 对话框发送:labview图形 获取完整无水印报告+源程序文件 前面板. (1)添加1个波形图表控件:控件选板→新式→图形→波形图表。 (2)添加1个停止按钮:控件选板→新式-→布尔→停止按钮。 设计的程序前面板如图9-1所示。 框图程序 (1)添加1个除法函数:函数选

    2024年02月05日
    浏览(32)
  • 滤波器组FBanks特征 & 梅尔频率倒谱系数MFCC基于librosa, torchaudio

    说明 :FBanks MFCC作为特征被广泛应用于语音识别领域。本文将使用 librosa 和 torchaudio 分别实现。计算流程如下图所示(此处暂不涉及PLP)。如有错误,欢迎指正。 目的 :尽可能简单地理解与使用MFCC,以快速上手语音识别任务。 本人使用版本说明 : ∘ qquadqquadcirc ∘ pyth

    2024年02月07日
    浏览(37)
  • RCR低通滤波器电路幅频、增益、相移特性分析

    一、前言         笔者负责开发的产品用于电力系统测控方面,所以在ADC电路的前级用到了RCR低通滤波器,以滤除通过PT/CT互感器串进来的高频干扰信号。与此同时,滤波电路也会对高次谐波的幅值、相位产生影响,导致我们的测量结果有偏差,因此我们需要计算滤波器特性

    2024年02月12日
    浏览(28)
  • Mutisim电路仿真的应用(有源低通滤波器的设计)

    设计一个二阶有源低通滤波器,已知其滤波电容均为luF,利用参数扫描工具和蒙特卡洛分析工具求解: a要使滤波器截止频率为500Hz,其电阻值应该取多少? b电容容差10%,电阻容差5%时,截止频率取值范围是多少? 设计要点: 该实验涉及到mutisim仿真软件的高级运用,能调试出有

    2024年02月04日
    浏览(36)
  • 数字电路基础知识系列(六)之LC滤波器的基础知识

    LC滤波器,是指将电感(L)与电容器 ©进行组合设计构成的滤波电路,可去除或通过特定频率的无源器件。电容器具有隔直流通交流,且交流频率越高越容易通过的特性。而电感则具有隔交流通直流,且交流频率越高越不易通过的特性。因此,电容器和电感是特性完全相反的被

    2024年02月03日
    浏览(80)
  • 模拟电路设计(39)---一文搞懂直流电源EMI滤波器

    基本电路形式如下图所示: 直流电源EMI滤波器的典型电路形式 其中Cx1和Cx2为差模电容,典型的取值范围为0.047uF~0.47uF,需满足耐压值的要求。L1和L2为差模电感,对称取值,设其电感值为Ld。L3是共模电感,设其电感值为Lc,取值一般为1~10mH,对于差模信号,共模电感会有一个

    2024年02月02日
    浏览(27)
  • 通过将信号频谱与噪声频谱进行比较,自动检测适当的带通滤波器转折频率研究(Matlab代码实现)

     💥💥💞💞 欢迎来到本博客 ❤️❤️💥💥 🏆博主优势: 🌞🌞🌞 博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️ 座右铭: 行百里者,半于九十。 📋📋📋 本文目录如下: 🎁🎁🎁 目录 💥1 概述 📚2 运行结果 🎉3 参考文献 🌈4 Matlab代码实现 corner

    2024年02月12日
    浏览(31)
  • 加载并绘制时间域内的心电图信号,并实施Q因子为1的陷波滤波器以去除50 Hz频率研究(Matlab代码实现)

     💥💥💞💞 欢迎来到本博客 ❤️❤️💥💥 🏆博主优势: 🌞🌞🌞 博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️ 座右铭: 行百里者,半于九十。 📋📋📋 本文目录如下: 🎁🎁🎁 目录 💥1 概述 📚2 运行结果 🎉3 参考文献 🌈4 Matlab代码实现 陷波滤

    2024年02月13日
    浏览(27)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包