全网最详细的线程池 ThreadPoolExecutor 详解,建议收藏!

这篇具有很好参考价值的文章主要介绍了全网最详细的线程池 ThreadPoolExecutor 详解,建议收藏!。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

一、ThreadPoolExecutor类讲解

1、线程池状态:

五种状态:

全网最详细的线程池 ThreadPoolExecutor 详解,建议收藏!

  • 线程池的shutdown() 方法,将线程池由 RUNNING(运行状态)转换为 SHUTDOWN状态
  • 线程池的shutdownNow()方法,将线程池由RUNNING 或 SHUTDOWN 状态转换为 STOP 状态。

注:SHUTDOWN 状态 和 STOP 状态 先会转变为 TIDYING 状态,最终都会变为 TERMINATED

2、ThreadPoolExecutor构造函数:

ThreadPoolExecutor继承自AbstractExecutorService,而AbstractExecutorService实现了ExecutorService接口。

全网最详细的线程池 ThreadPoolExecutor 详解,建议收藏!

接下来我们分别讲解这些参数的含义。

2.1)线程池工作原理:

  • corePoolSize :线程池中核心线程数的最大值
  • maximumPoolSize :线程池中能拥有最多线程数
  • workQueue:用于缓存任务的阻塞队列

当调用线程池execute() 方法添加一个任务时,线程池会做如下判断:

  • 如果有空闲线程,则直接执行该任务;
  • 如果没有空闲线程,且当前运行的线程数少于corePoolSize,则创建新的线程执行该任务;
  • 如果没有空闲线程,且当前的线程数等于corePoolSize,同时阻塞队列未满,则将任务入队列,而不添加新的线程;
  • 如果没有空闲线程,且阻塞队列已满,同时池中的线程数小于maximumPoolSize ,则创建新的线程执行任务;
  • 如果没有空闲线程,且阻塞队列已满,同时池中的线程数等于maximumPoolSize ,则根据构造函数中的 handler 指定的策略来拒绝新的任务。

全网最详细的线程池 ThreadPoolExecutor 详解,建议收藏!

2.2)KeepAliveTime:

  • keepAliveTime :表示空闲线程的存活时间
  • TimeUnit unit :表示keepAliveTime的单位

当一个线程无事可做,超过一定的时间(keepAliveTime)时,线程池会判断,如果当前运行的线程数大于 corePoolSize,那么这个线程就被停掉。所以线程池的所有任务完成后,它最终会收缩到 corePoolSize 的大小。

注:如果线程池设置了allowCoreThreadTimeout参数为true(默认false),那么当空闲线程超过keepaliveTime后直接停掉。(不会判断线程数是否大于corePoolSize)即:最终线程数会变为0。

2.3)workQueue 任务队列:

  • workQueue :它决定了缓存任务的排队策略
  • ThreadPoolExecutor线程池推荐了三种等待队列,它们是:SynchronousQueueLinkedBlockingQueueArrayBlockingQueue
1)有界队列:
  • SynchronousQueue :一个不存储元素的阻塞队列,每个插入操作必须等到另一个线程调用移除操作,否则插入操作一直处于 阻塞状态,吞吐量通常要高于LinkedBlockingQueue,静态工厂方法 Executors.newCachedThreadPool 使用了这个队列。
  • ArrayBlockingQueue:一个由数组支持的有界阻塞队列。此队列按 FIFO(先进先出)原则对元素进行排序。一旦创建了这样的缓存区,就不能再增加其容量。试图向已满队列中放入元素会导致操作受阻塞;试图从空队列中提取元素将导致类似阻塞。
2)无界队列:
  • LinkedBlockingQueue:基于链表结构的无界阻塞队列,它可以指定容量也可以不指定容量(实际上任何无限容量的队列/栈都是有容量的,这个容量就是Integer.MAX_VALUE
  • PriorityBlockingQueue:是一个按照优先级进行内部元素排序的无界阻塞队列。队列中的元素必须实现 Comparable 接口,这样才能通过实现compareTo()方法进行排序。优先级最高的元素将始终排在队列的头部;PriorityBlockingQueue 不会保证优先级一样的元素的排序。

注意:keepAliveTimemaximumPoolSizeBlockingQueue的类型均有关系。如果BlockingQueue是无界的,那么永远不会触发maximumPoolSize,自然keepAliveTime也就没有了意义。

2.4)threadFactory:

threadFactory :指定创建线程的工厂。(可以不指定)

如果不指定线程工厂时,ThreadPoolExecutor 会使用ThreadPoolExecutor.defaultThreadFactory 创建线程。默认工厂创建的线程:同属于相同的线程组,具有同为 Thread.NORM_PRIORITY 的优先级,以及名为 “pool-XXX-thread-” 的线程名(XXX为创建线程时顺序序号),且创建的线程都是非守护进程。

2.5)handler 拒绝策略:

handler :表示当 workQueue 已满,且池中的线程数达到 maximumPoolSize 时,线程池拒绝添加新任务时采取的策略。(可以不指定)

全网最详细的线程池 ThreadPoolExecutor 详解,建议收藏!

最科学的的还是 AbortPolicy 提供的处理方式:抛出异常,由开发人员进行处理。

3、常用方法:

除了在创建线程池时指定上述参数的值外,还可在线程池创建以后通过如下方法进行设置。

全网最详细的线程池 ThreadPoolExecutor 详解,建议收藏!

此外,还有一些方法:

  • getCorePoolSize():返回线程池的核心线程数,这个值是一直不变的,返回在构造函数中设置的coreSize大小;
  • getMaximumPoolSize():返回线程池的最大线程数,这个值是一直不变的,返回在构造函数中设置的coreSize大小;
  • getLargestPoolSize():记录了曾经出现的最大线程个数(水位线);
  • getPoolSize():线程池中当前线程的数量;
  • getActiveCount():Returns the approximate(近似) number of threads that are actively executing tasks;
  • prestartAllCoreThreads():会启动所有核心线程,无论是否有待执行的任务,线程池都会创建新的线程,直到池中线程数量达到 corePoolSize;
  • prestartCoreThread():会启动一个核心线程(同上);
  • allowCoreThreadTimeOut(true):允许核心线程在KeepAliveTime时间后,退出;

4、Executors类:

Executors类的底层实现便是ThreadPoolExecutor!Executors 工厂方法有:

  • Executors.newCachedThreadPool():无界线程池,可以进行自动线程回收
  • Executors.newFixedThreadPool(int):固定大小线程池
  • Executors.newSingleThreadExecutor():单个后台线程

它们均为大多数使用场景预定义了设置。不过在阿里java文档中说明,尽量不要用该类创建线程池。

二、线程池相关接口介绍:

1、ExecutorService接口:

该接口是真正的线程池接口。上面的ThreadPoolExecutor以及下面的ScheduledThreadPoolExecutor都是该接口的实现类。改接口常用方法:

  • Future<?> submit(Runnable task):提交Runnable任务到线程池,返回Future对象,由于Runnable没有返回值,也就是说调用Future对象get()方法返回null;
  • <T> Future<T> submit(Callable<T> task):提交Callable任务到线程池,返回Future对象,调用Future对象get()方法可以获取Callable的返回值;
  • <T> Future<T> submit(Runnable task,T result):提交Runnable任务到线程池,返回Future对象,调用Future对象get()方法可以获取Runnable的参数值;
  • invokeAll(collection of tasks)/invokeAll(collection of tasks, long timeout, TimeUnit unit):invokeAll会按照任务集合中的顺序将所有的Future添加到返回的集合中,该方法是一个阻塞的方法。只有当所有的任务都执行完毕时,或者调用线程被中断,又或者超出指定时限时,invokeAll方法才会返回。当invokeAll返回之后每个任务要么返回,要么取消,此时客户端可以调用get/isCancelled来判断具体是什么情况。
  • invokeAny(collection of tasks)/invokeAny(collection of tasks, long timeout, TimeUnit unit):阻塞的方法,不会返回 Future 对象,而是返回集合中某一个Callable 对象的结果,而且无法保证调用之后返回的结果是哪一个 Callable,如果一个任务运行完毕或者抛出异常,方法会取消其它的 Callable 的执行。和invokeAll区别是只要有一个任务执行完了,就把结果返回,并取消其他未执行完的任务;同样,也带有超时功能;
  • shutdown():在完成已提交的任务后关闭服务,不再接受新任;
  • shutdownNow():停止所有正在执行的任务并关闭服务;
  • isTerminated():测试是否所有任务都执行完毕了;
  • isShutdown():测试是否该ExecutorService已被关闭。

1.1)submit方法示例:

我们知道,线程池接口中有以下三个主要方法,接下来我们看一下具体示例:

全网最详细的线程池 ThreadPoolExecutor 详解,建议收藏!

1)Callable:
public static ThreadPoolExecutor threadPool = new ThreadPoolExecutor(5, 50, 300, TimeUnit.SECONDS,
   new ArrayBlockingQueue<Runnable>(50),
   new ThreadFactory(){ public Thread newThread(Runnable r) {
                return new Thread(r, "schema_task_pool_" + r.hashCode());
            }}, new ThreadPoolExecutor.DiscardOldestPolicy());

public static void callableTest() {
 int a = 1;
 //callable
 Future<Boolean> future = threadPool.submit(new Callable<Boolean>(){
  @Override
  public Boolean call() throws Exception {
   int b = a + 100;
   System.out.println(b);
   return true;
  }
 });
 try {
  System.out.println("feature.get");
  Boolean boolean1 = future.get();
  System.out.println(boolean1);
 } catch (InterruptedException e) {
  System.out.println("InterruptedException...");
  e.printStackTrace();
 } catch (ExecutionException e) {
  System.out.println("execute exception...");
  e.printStackTrace();
 }
}
2)Runnable:
public static void runnableTest() {
 int a = 1;
 //runnable
 Future<?> future1 = threadPool.submit(new Runnable(){
  @Override
  public void run() {
   int b = a + 100;
   System.out.println(b);
  }
 });
 try {
  System.out.println("feature.get");
  Object x = future1.get(900,TimeUnit.MILLISECONDS);
  System.out.println(x);//null
 } catch (InterruptedException e) {
  e.printStackTrace();
 } catch (ExecutionException e) {
  System.out.println("execute exception...");
  e.printStackTrace();
 } catch (TimeoutException e) {
  e.printStackTrace();
 }
}
3)Runnable+result:
class RunnableTask implements Runnable {
 Person p;
 RunnableTask(Person p) {
  this.p = p;
 }

 @Override
 public void run() {
  p.setId(1);
  p.setName("Runnable Task...");
 }
}
class Person {
 private Integer id;
 private String name;

 public Person(Integer id, String name) {
  super();
  this.id = id;
  this.name = name;
 }
 public Integer getId() {
  return id;
 }
 public void setId(Integer id) {
  this.id = id;
 }
 public String getName() {
  return name;
 }
 public void setName(String name) {
  this.name = name;
 }
 @Override
 public String toString() {
  return "Person [id=" + id + ", name=" + name + "]";
 }
}

public static void runnableTest2() {
 //runnable + result
 Person p = new Person(0,"person");
 Future<Person> future2 = threadPool.submit(new RunnableTask(p),p);
 try {
  System.out.println("feature.get");
  Person person = future2.get();
  System.out.println(person);
 } catch (InterruptedException e) {
  e.printStackTrace();
 } catch (ExecutionException e) {
  e.printStackTrace();
 }
}

1.2)线程池执行时,Callable的call方法(Runnable的run方法)抛出异常后,会出现什么?

在上面的例子中我们可以看到,线程池无论是执行Callable还是Runnable,调用返回的Future对象get()方法时需要处理两种异常(如果是调用get(timeout)方法,需要处理三种异常),如下:

//在线程池上运行
Future<Object> future = threadPool.submit(callable);
try {
 System.out.println("feature.get");
 Object x = future.get(900,TimeUnit.MILLISECONDS);
 System.out.println(x);
} catch (InterruptedException e) {
 e.printStackTrace();
} catch (ExecutionException e) {
 System.out.println("execute exception...");
 e.printStackTrace();
} catch (TimeoutException e) {
 e.printStackTrace();
}
  • 如果get方法被打断,进入InterruptedException异常;
  • 如果线程执行过程(call、run方法)中抛出异常,进入ExecutionException异常;
  • 如果get方法超时,进入TimeoutException异常;

1.3)submit()和execute()方法区别:

ExecutorServiceScheduledExecutorService接口的submit()execute()方法都是把任务提交到线程池中,但二者的区别是

  • 接收的参数不一样,execute只能接收Runnable类型、submit可以接收RunnableCallable两种类型;
  • submit有返回值,而execute没有返回值;submit方便Exception处理;
1)submit方法内部实现:

其实submit方法也没有什么神秘的,就是将我们的任务封装成了RunnableFuture接口(继承了Runnable、Future接口),再调用execute方法,我们看源码:

    public Future<?> submit(Runnable task) {
        if (task == null) throw new NullPointerException();
        RunnableFuture<Void> ftask = newTaskFor(task, null);  //转成 RunnableFuture,传的result是null
        execute(ftask);
        return ftask;
    }

    public <T> Future<T> submit(Runnable task, T result) {
        if (task == null) throw new NullPointerException();
        RunnableFuture<T> ftask = newTaskFor(task, result);
        execute(ftask);
        return ftask;
    }

    public <T> Future<T> submit(Callable<T> task) {
        if (task == null) throw new NullPointerException();
        RunnableFuture<T> ftask = newTaskFor(task);
        execute(ftask);
        return ftask;
    }
2)newTaskFor方法内部实现:

newTaskFor方法是new了一个FutureTask返回,所以三个方法其实都是把task转成FutureTask,如果task是Callable,就直接赋值,如果是Runnable 就转为Callable再赋值。

submit参数是Callable 时:

    protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
        return new FutureTask<T>(callable);
    }
    public FutureTask(Callable<V> callable) {
        if (callable == null)
            throw new NullPointerException();
        this.callable = callable;
        this.state = NEW;
    }

submit参数是Runnable时:

   // 按顺序看,层层调用
    protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
        return new FutureTask<T>(runnable, value);
    }
    public FutureTask(Runnable runnable, V result) {
        this.callable = Executors.callable(runnable, result);  //转 runnable 为 callable
        this.state = NEW;
    }
   // 以下为Executors中的方法
    public static <T> Callable<T> callable(Runnable task, T result) {
        if (task == null)
            throw new NullPointerException();
        return new RunnableAdapter<T>(task, result);
    }
    static final class RunnableAdapter<T> implements Callable<T> {  //适配器
        final Runnable task;
        final T result;
        RunnableAdapter(Runnable task, T result) {
            this.task = task;
            this.result = result;
        }
        public T call() {
            task.run();
            return result;
        }
    }

看了源码就揭开了神秘面纱了,就是因为Future需要返回结果,所以内部task必须是Callable,如果task是Runnable 就偷天换日,在Runnable 外面包个Callable马甲,返回的结果在构造时就写好。

参考:https://blog.csdn.net/liuxiao723846/article/details/108024212

1.4)ScheduledExecutorService接口:

继承ExecutorService,并且提供了按时间安排执行任务的功能,它提供的方法主要有:

  • schedule(task, initDelay): 安排所提交的Callable或Runnable任务在initDelay指定的时间后执行;
  • scheduleAtFixedRate():安排所提交的Runnable任务按指定的间隔重复执行;
  • scheduleWithFixedDelay():安排所提交的Runnable任务在每次执行完后,等待delay所指定的时间后重复执行;

注:该接口的实现类是ScheduledThreadPoolExecutor

2、Callable接口:

jdk1.5以后创建线程可以通过一下方式:

  • 继承Thread类,实现void run()方法;
  • 实现Runnable接口,实现void run()方法;
  • 实现Callable接口,实现V call() Throws Exception方法
1)Callable和Runnale接口区别:
  • Callable可以抛出异常,和FutureFutureTask配合可以用来获取异步执行的结果;
  • Runnable没有返回结果,异常只能内部消化;
2)执行Callable的线程的方法可以通过以下两种方式:
  • 借助FutureTask,使用Threadstart方法来执行;
  • 加入到线程池中,使用线程池的executesubmit执行;

注:Callable无法直接使用Thread来执行;

我们都知道,Callable带有返回值的,如果我们不需要返回值,却又想用Callable该如何做?

jdk中有个Void类型(大写V),但必须也要return null

threadpool.submit(new Callable<Void>() {
    @Override
    public Void call() {
        //...
        return null;
    }
});
3)通过Executors工具类可以把Runnable接口转换成Callable接口:

Executors中的callable方法可以将Runnable转成Callable,如下:

public static <T> Callable<T> callable(Runnable task, T result) {
        if (task == null)
            throw new NullPointerException();
        return new RunnableAdapter<T>(task, result);
}

RunnableAdapter类在上面已经看过源码,原理就是将返回值result作为成员变量,通过参数传递进去,进而实现了Runnable可以返回值。

示例:

public static void test5() {
     Person p = new Person(0,"person");
     RunnableTask runnableTask = new RunnableTask(p);//创建runnable
     Callable<Person> callable = Executors.callable(runnableTask,p);//转换
     Future<Person> future1 = threadPool.submit(callable);//在线程池上执行Callable
     try {
   Person person = future1.get();
   System.out.println(person);
  } catch (InterruptedException | ExecutionException e) {
   e.printStackTrace();
  }

     Runnable runnable = new Runnable() {//创建Runnable
   @Override
   public void run() {

   }
     };
     Callable<Object> callable2 = Executors.callable(runnable);//转换
     Future<Object> future2 = threadPool.submit(callable2);//在线程池上执行Callable
     try {
      Object o = future2.get();
   System.out.println(o);
  } catch (InterruptedException | ExecutionException e) {
   e.printStackTrace();
  }
}

3、Future接口:

3.1)Future是用来获取异步计算结果的接口,常用方法:

  • boolean cancel(boolean mayInterruptIfRunning):试图取消对此任务的执行。如果任务已完成、或已取消,或者由于某些其他原因而无法取消,则此尝试将失败。当调用 cancel 时,如果调用成功,而此任务尚未启动,则此任务将永不运行。如果任务已经启动,则 mayInterruptIfRunning 参数确定是否应该以试图停止任务的方式来中断执行此任务的线程。此方法返回后,对 isDone() 的后续调用将始终返回 true。如果此方法返回 true,则对 isCancelled() 的后续调用将始终返回 true。
  • boolean isCancelled():如果在任务正常完成前将其取消,则返回 true。
  • boolean isDone():如果任务已完成,则返回 true,可能由于正常终止、异常或取消而完成,在所有这些情况中,此方法都将返回 true。
  • V get()throws InterruptedException,ExecutionException:获取异步结果,此方法会一直阻塞等到计算完成;
  • V get(long timeout,TimeUnit unit) throws InterruptedException,ExecutionException,TimeoutException:获取异步结果,此方法会在指定时间内一直阻塞等到计算完成,超时后会抛出超时异常。

通过方法分析我们也知道实际上Future提供了3种功能:

  • 能够中断执行中的任务;
  • 判断任务是否执行完成;
  • 获取任务执行完成后额结果。

但是Future只是一个接口,我们无法直接创建对象,因此就需要其实现类FutureTask登场啦。

3.2)FutureTask类:

1)FutureTask类的实现:
public class FutureTask<V> implements RunnableFuture<V> {
//...
}

public interface RunnableFuture<V> extends Runnable, Future<V> {
    /**
     * Sets this Future to the result of its computation
     * unless it has been cancelled.
     */
    void run();
}

FutureTask实现了RunnableFuture两个接口。由于FutureTask实现了Runnable,因此它既可以通过Thread包装来直接执行,也可以提交给ExecuteService来执行。并且还可以直接通过get()函数获取执行结果,该函数会阻塞,直到结果返回。

因此FutureTask既是FutureRunnable,又是包装了Callable( 如果是Runnable最终也会被转换为Callable ), 它是这两者的合体。

2)FutureTask的构造函数:
public FutureTask(Callable<V> callable) {

}

public FutureTask(Runnable runnable, V result) {

}

3.3)示例:(FutureTask两种构造函数、以及在Thread和线程池上运行)

1)FutureTask包装过的Callable在Thread、线程池上执行:
public static void test3() {
  int a = 1,b = 2;
  Callable<Integer> callable = new Callable<Integer>() {
   @Override
   public Integer call() throws Exception {
    return a + b;
   }
  };
  //通过futureTask来执行Callable
  FutureTask<Integer> futureTask = new FutureTask<>(callable);

  //1.使用Thread执行线程
  new Thread(futureTask).start();
  try {
   Integer integer = futureTask.get();
   System.out.println(integer);
  } catch (InterruptedException e) {
   e.printStackTrace();
  } catch (ExecutionException e) {
   e.printStackTrace();
  }

  //2.使用线程池执行线程
  Executors.newFixedThreadPool(1).submit(futureTask);
  threadPool.shutdown();
  try {
   Integer integer = futureTask.get();
   System.out.println(integer);
  } catch (InterruptedException | ExecutionException e) {
   e.printStackTrace();
  }
 }
2)FutureTask包装过的Runnable在Thread、线程池上执行:
public static void test4() {
  Person p = new Person(0,"person");
  RunnableTask runnableTask = new RunnableTask(p);

  //创建futureTask来执行Runnable
  FutureTask<Person> futureTask = new FutureTask<>(runnableTask,p);

  //1.使用Thread执行线程
  new Thread(futureTask).start();
  try {
   Person x = futureTask.get();
   System.out.println(x);
  } catch (InterruptedException | ExecutionException e) {
   e.printStackTrace();
  }

  //2.使用线程池执行线程
  threadPool.submit(futureTask);
  threadPool.shutdown();
  try {
   Person y = futureTask.get();
   System.out.println(y);
  } catch (InterruptedException | ExecutionException e) {
   e.printStackTrace();
  }
 }

Person、RunnableTask类同上面的示例中。

来源:https://blog.csdn.net/liuxiao723846

更多文章推荐:

1.Spring Boot 3.x 教程,太全了!

2.2,000+ 道 Java面试题及答案整理(2024最新版)

3.免费获取 IDEA 激活码的 7 种方式(2024最新版)

觉得不错,别忘了随手点赞+转发哦!文章来源地址https://www.toymoban.com/news/detail-780531.html

到了这里,关于全网最详细的线程池 ThreadPoolExecutor 详解,建议收藏!的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 大学生网页设计制作作业实例代码 (全网最全,建议收藏) HTML+CSS+JS

    临近期末,大一新生的各种考试和专业结课作业纷至沓来。web实训大作业、网页期末作业、web课程与设计、网页设计等,简直让人头大。你还在为网页设计老师的作业要求感到头大?网页作业无从下手?网页要求的总数量太多?没有合适的模板?等等一系列问题。你想要解决

    2024年02月03日
    浏览(64)
  • 全网最全2W字-基于Java+SpringBoot+Vue+Element实现小区生活保障系统(建议收藏)

    博主介绍 : ✌ 全网粉丝30W+,CSDN特邀作者、博客专家、新星计划导师、java领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战 ✌  🍅 文末获取源码联系 🍅 👇🏻 精彩专栏 推荐订阅 👇🏻 不然下次找不到哟  java项目精

    2024年02月07日
    浏览(39)
  • 大学生web网页设计期末作业实例代码 (全网最全,建议收藏) HTML+CSS+JS(网页源码)

    临近期末,大一新生的各种考试和专业结课作业纷至沓来。web实训大作业、网页期末作业、web课程与设计、网页设计等,简直让人头大。你还在为网页设计老师的作业要求感到头大?网页作业无从下手?网页要求的总数量太多?没有合适的模板?等等一系列问题。你想要解决

    2024年04月28日
    浏览(53)
  • C++入门(详细解读,建议收藏)

            C语言是结构化和模块化的语言,适合处理较小规模的程序。对于复杂的问题,规模较大的程序,需要高度的抽象和建模时,C语言则不合适。为了解决软件危机, 20世纪80年代, 计算机界提出了OOP(object oriented programming:面向对象)思想,支持面向对象的程序设计语

    2024年02月02日
    浏览(68)
  • 微信小程序详细教程(建议收藏)

    1. 小程序的安装与创建 第一步 打开小程序官网 第二步 找到开发管理,找到开发设置,下面有一个 AppID ,复制即可,后面开发小程序需要用 新建项目 ,需要先下载微信开发工具下载网址,安装完成之后进入如下的界面。复制刚才的AppID,选择 不使用云开发 , javascript基础模

    2024年02月03日
    浏览(46)
  • ZCU106的FMC接口AD/DA(全网唯一、全网最详)

    马上就要毕业啦,好久没写文章了,今天给大家带来硕士期间的最后一次AD/DA实验的实验记录,废话少说,先看连接与视频。 连接 视频 我做的实验是AN108+FL9613的DA与AD回环测试,可能和本节教程有点出入,不过没关系,能成功就行。 实验视频 一、实验任务 采用xilinx的dds波形

    2024年02月02日
    浏览(46)
  • Springboot集成Freemarker|超级详细,建议收藏

    上一期,我是带着大家入门了 SpringBoot集成Kafka ,今天我再来一期Freemarker的零基础教学吧。不知道大家对kafka有多少了解,反正我就是从搭建开始,然后再加一个简单演示,这就算是带着大家了个门哈,剩下的我再后边慢慢出教程给大家说。 演示环境:idea2021 + springboot 2.3.1

    2024年02月11日
    浏览(37)
  • ~~~超详细Nginx安装教程,建议收藏保存

    1.1、Nginx概述 Nginx (“engine x”) 是一个高性能的HTTP和反向代理服务器,特点是占有内存少,并发能力强,事实上nginx的并发能力确实在同类型的网页服务器中表现较好,中国大陆使用nginx网站用户有:百度、京东、新浪、网易、腾讯、淘宝等。 1.2、Nginx作为web服务器 Nginx可以作

    2024年02月08日
    浏览(50)
  • python超详细基础文件操作【建议收藏】

    为了巩固所学的知识,作者尝试着开始发布一些学习笔记类的博客,方便日后回顾。当然,如果能帮到一些萌新进行新技术的学习那也是极好的。作者菜菜一枚,文章中如果有记录错误,欢迎读者朋友们批评指正。 (博客的参考源码可以在我主页的资源里找到,如果在学习的

    2024年02月05日
    浏览(39)
  • vim命令大全,非常详细,强烈建议收藏!

    Vim是一款常用的文本编辑器,具有强大的功能和高度的可定制性。在本文中,我们将详细介绍Vim的常用命令,并提供相关的示例。如果您是初学者或已经熟练使用Vim,这篇文章都能为您提供帮助。 以下是一些基本的Vim命令: i :在当前光标位置插入文本。 x :删除当前光标所

    2024年02月15日
    浏览(40)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包