BEVFusion(北大&阿里)环境搭建教程

这篇具有很好参考价值的文章主要介绍了BEVFusion(北大&阿里)环境搭建教程。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

BEVFusion环境搭建

论文题目:BEVFusion: A Simple and Robust LiDAR-Camera Fusion Framework

论文地址:https://arxiv.org/pdf/2205.13790.pdf

代码地址:ADLab-AutoDrive/BEVFusion: Offical PyTorch implementation of “BEVFusion: A Simple and Robust LiDAR-Camera Fusion Framework” (github.com)

前言:这是今年新发的一篇论文,我在第一次阅读时,代码还未开源,前几天发现开源了,而且这个框架做的很清晰,可以基于这个工作熟悉一下融合方案,也能稍稍改进一下。

笔者环境:

sys.platform: linux
Python: 3.8.3 | packaged by conda-forge | (default, Jun 1 2020, 17:43:00) [GCC 7.5.0]
CUDA available: True
GPU 0,1: NVIDIA GeForce RTX 3090
CUDA_HOME: /usr
NVCC: Build cuda_11.5.r11.5/compiler.30672275_0
GCC: gcc (Ubuntu 7.5.0-6ubuntu2) 7.5.0
PyTorch: 1.8.0+cu111
PyTorch compiling details: PyTorch built with:

  • GCC 7.3
  • C++ Version: 201402
  • Intel® Math Kernel Library Version 2020.0.0 Product Build 20191122 for Intel® 64 architecture applications
  • Intel® MKL-DNN v1.7.0 (Git Hash 7aed236906b1f7a05c0917e5257a1af05e9ff683)
  • OpenMP 201511 (a.k.a. OpenMP 4.5)
  • NNPACK is enabled
  • CPU capability usage: AVX2
  • CUDA Runtime 11.1
  • NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86
  • CuDNN 8.0.5
  • Magma 2.5.2
  • Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.1, CUDNN_VERSION=8.0.5, CXX_COMPILER=/opt/rh/devtoolset-7/root/usr/bin/c++, CXX_FLAGS= -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -fopenmp -DNDEBUG -DUSE_KINETO -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -O2 -fPIC -Wno-narrowing -Wall -Wextra -Werror=return-type -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-sign-compare -Wno-unused-parameter -Wno-unused-variable -Wno-unused-function -Wno-unused-result -Wno-unused-local-typedefs -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_VERSION=1.8.0, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON,

TorchVision: 0.9.0+cu111
OpenCV: 4.6.0
MMCV: 1.4.0
MMCV Compiler: GCC 7.3
MMCV CUDA Compiler: 11.1
MMDetection: 2.11.0
MMDetection3D: 0.11.0+9d3e162

说人话:torch1.8.0+cuda111,显卡是3090,其余环境根据根据官方文档配的

一、安装

1、克隆BEVFusion代码

git clone https://github.com/ADLab-AutoDrive/BEVFusion.git

2、新建虚拟环境

conda create -n bevfusion python=3.8.3
conda activate bevfusion #激活

3、根据cuda版本安装torch

尽量选择1.7或者1.8,cuda版本要对应
2022年11月22日更新:尽量选1.7吧,1.8的bug导致训练有些问题
2022年12月2日更新:最近太忙,前几天发现1.7的torch不适合在这个项目上用,具体原因和3090显卡有关,缺少相关库(3090最低支持cuda11.1,torch1.7最高支持cuda11.0)

pip install torch=1.8.0+cu111 torchvision=0.9.0+cu111 torchaudio==0.8.0 -f https://download.pytorch.org/whl/torch_stable.html

4、安装mmcv-full

这里要根据自己的torch和cuda来,另外,BEVFusion官方文档推荐1.4.0版本

从以下网址找到自己合适的版本

https://download.openmmlab.com/mmcv/dist/{cu_version}/{torch_version}/index.html

其中cu_version代表cuda版本,torch_version代表torch版本,

例如,我的是torch1.8.0+cuda111,所以我的地址是:

https://download.openmmlab.com/mmcv/dist/cu111/torch1.8.0/index.html

因为创建的环境是python3.8,所以选择cp38,别忘了mmcv-full版本是1.4.0,下载whl文件,并传到服务器上,然后pip whl文件(不再赘述pip安装whl了,百度一下)

bevfusion环境配置,深度学习,python,pytorch

5、安装MMDetection

下面是BEVFusion官方推荐的环境

python=3.8.3
mmdet=2.11.0 (please install mmdet in mmdetection-2.11.0)
mmcv=1.4.0
mmdet3d=0.11.0
numpy=1.19.2
torch=1.7.0
torchvision=0.8.0

注意please install mmdet in mmdetection-2.11.0,作者已经在仓库中放了这个文件夹,我们直接进入这个文件夹
bevfusion环境配置,深度学习,python,pytorch

然后执行:

pip install -r requirements/build.txt
pip install -v -e .  # or "python setup.py develop"(推荐执行后者)

6、安装MMDetection3D

退回到BEVFusion根目录下,执行下面指令

pip install -v -e .  # or "python setup.py develop"(推荐执行后者)

至此配置完毕

以下是我的环境

Package Version Editable project location


absl-py 1.3.0
addict 2.4.0
anyio 3.6.2
argon2-cffi 21.3.0
argon2-cffi-bindings 21.2.0
asttokens 2.1.0
attrs 22.1.0
backcall 0.2.0
beautifulsoup4 4.11.1
black 22.10.0
bleach 5.0.1
cachetools 5.2.0
certifi 2022.9.24
cffi 1.15.1
charset-normalizer 2.1.1
click 8.1.3
contourpy 1.0.6
cycler 0.11.0
Cython 0.29.32
debugpy 1.6.3
decorator 5.1.1
defusedxml 0.7.1
depthwise-conv2d-implicit-gemm 0.0.0
descartes 1.1.0
entrypoints 0.4
exceptiongroup 1.0.4
executing 1.2.0
fastjsonschema 2.16.2
filelock 3.8.0
fire 0.4.0
flake8 5.0.4
fonttools 4.38.0
google-auth 2.14.1
google-auth-oauthlib 0.4.6
grpcio 1.50.0
h5py 3.7.0
huggingface-hub 0.11.0
idna 3.4
imageio 2.22.4
importlib-metadata 5.0.0
importlib-resources 5.10.0
iniconfig 1.1.1
ipykernel 6.17.1
ipython 8.6.0
ipython-genutils 0.2.0
ipywidgets 8.0.2
jedi 0.18.1
Jinja2 3.1.2
joblib 1.2.0
jsonschema 4.17.0
jupyter 1.0.0
jupyter_client 7.4.6
jupyter-console 6.4.4
jupyter_core 5.0.0
jupyter-server 1.23.2
jupyterlab-pygments 0.2.2
jupyterlab-widgets 3.0.3
kiwisolver 1.4.4
llvmlite 0.31.0
loguru 0.6.0
lyft-dataset-sdk 0.0.8
Markdown 3.4.1
MarkupSafe 2.1.1
matplotlib 3.6.2
matplotlib-inline 0.1.6
mccabe 0.7.0
mistune 2.0.4
mmcls 0.24.1
mmcv-full 1.4.0
mmdet 2.11.0 /home/wistful/work/my_bevfusion/mmdetection-2.11.0
mmdet3d 0.11.0 /home/wistful/work/my_bevfusion
mmpycocotools 12.0.3
msgpack 1.0.4
msgpack-numpy 0.4.8
multimethod 1.9
mypy-extensions 0.4.3
nbclassic 0.4.8
nbclient 0.7.0
nbconvert 7.2.5
nbformat 5.7.0
nest-asyncio 1.5.6
networkx 2.2
ninja 1.11.1
notebook 6.5.2
notebook_shim 0.2.2
numba 0.48.0
numpy 1.23.4
nuscenes-devkit 1.1.9
oauthlib 3.2.2
opencv-python 4.6.0.66
packaging 21.3
pandas 1.4.4
pandocfilters 1.5.0
parso 0.8.3
pathspec 0.10.2
pexpect 4.8.0
pickleshare 0.7.5
Pillow 9.3.0
pip 22.3.1
pkgutil_resolve_name 1.3.10
platformdirs 2.5.4
plotly 5.11.0
pluggy 1.0.0
plyfile 0.7.4
prettytable 3.5.0
prometheus-client 0.15.0
prompt-toolkit 3.0.32
protobuf 3.20.3
psutil 5.9.4
ptyprocess 0.7.0
pure-eval 0.2.2
pyasn1 0.4.8
pyasn1-modules 0.2.8
pycocotools 2.0.6
pycodestyle 2.9.1
pycparser 2.21
pyflakes 2.5.0
Pygments 2.13.0
pyparsing 3.0.9
pyquaternion 0.9.9
pyrsistent 0.19.2
pytest 7.2.0
python-dateutil 2.8.2
pytz 2022.6
PyWavelets 1.4.1
PyYAML 6.0
pyzmq 24.0.1
qtconsole 5.4.0
QtPy 2.3.0
requests 2.28.1
requests-oauthlib 1.3.1
rsa 4.9
scikit-image 0.19.3
scikit-learn 1.1.3
scipy 1.9.3
Send2Trash 1.8.0
setuptools 65.5.1
Shapely 1.8.5.post1
six 1.16.0
sniffio 1.3.0
soupsieve 2.3.2.post1
stack-data 0.6.1
tabulate 0.9.0
tenacity 8.1.0
tensorboard 2.11.0
tensorboard-data-server 0.6.1
tensorboard-plugin-wit 1.8.1
tensorpack 0.11
termcolor 2.1.0
terminado 0.17.0
terminaltables 3.1.10
threadpoolctl 3.1.0
tifffile 2022.10.10
timm 0.6.11
tinycss2 1.2.1
toml 0.10.2
tomli 2.0.1
torch 1.8.0+cu111
torchaudio 0.8.0
torchpack 0.3.1
torchvision 0.9.0+cu111
tornado 6.2
tqdm 4.64.1
traitlets 5.5.0
trimesh 2.35.39
typing_extensions 4.4.0
urllib3 1.26.12
wcwidth 0.2.5
webencodings 0.5.1
websocket-client 1.4.2
Werkzeug 2.2.2
wheel 0.38.4
widgetsnbextension 4.0.3
yapf 0.32.0
zipp 3.10.0


sys.platform: linux
Python: 3.8.3 | packaged by conda-forge | (default, Jun 1 2020, 17:43:00) [GCC 7.5.0]
CUDA available: True
GPU 0,1: NVIDIA GeForce RTX 3090
CUDA_HOME: /usr/local/cuda
NVCC: Build cuda_11.1.TC455_06.29069683_0
GCC: gcc (Ubuntu 7.5.0-6ubuntu2) 7.5.0
PyTorch: 1.8.0+cu111
PyTorch compiling details: PyTorch built with:

  • GCC 7.3
  • C++ Version: 201402
  • Intel® Math Kernel Library Version 2020.0.0 Product Build 20191122 for Intel® 64 architecture applications
  • Intel® MKL-DNN v1.7.0 (Git Hash 7aed236906b1f7a05c0917e5257a1af05e9ff683)
  • OpenMP 201511 (a.k.a. OpenMP 4.5)
  • NNPACK is enabled
  • CPU capability usage: AVX2
  • CUDA Runtime 11.1
  • NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86
  • CuDNN 8.0.5
  • Magma 2.5.2
  • Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.1, CUDNN_VERSION=8.0.5, CXX_COMPILER=/opt/rh/devtoolset-7/root/usr/bin/c++, CXX_FLAGS= -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -fopenmp -DNDEBUG -DUSE_KINETO -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -O2 -fPIC -Wno-narrowing -Wall -Wextra -Werror=return-type -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-sign-compare -Wno-unused-parameter -Wno-unused-variable -Wno-unused-function -Wno-unused-result -Wno-unused-local-typedefs -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_VERSION=1.8.0, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON,

TorchVision: 0.9.0+cu111
OpenCV: 4.6.0
MMCV: 1.4.0
MMCV Compiler: GCC 7.3
MMCV CUDA Compiler: 11.1
MMDetection: 2.20.0
MMDetection3D: 0.11.0+9d3e162

二、组织数据集

注意,一般来说使用mmdetection3d框架的工作,要把数据集组织到mmdetection3d/data下,BEVFusion整个目录就是mmdetection3d的组织格式。所以要把数据集组织到BEVFusion/data下

It is recommended to symlink the dataset root to $MMDETECTION3D/data. If your folder structure is different from the following, you may need to change the corresponding paths in config files.

数据集组织我就不再赘述了,按照官方说明的组织形式组织好

mmdetection3d
├── mmdet3d
├── tools
├── configs
├── data
│ ├── nuscenes
│ │ ├── maps
│ │ ├── samples
│ │ ├── sweeps
│ │ ├── v1.0-test
| | ├── v1.0-trainval
│ ├── kitti
│ │ ├── ImageSets
│ │ ├── testing
│ │ │ ├── calib
│ │ │ ├── image_2
│ │ │ ├── velodyne
│ │ ├── training
│ │ │ ├── calib
│ │ │ ├── image_2
│ │ │ ├── label_2
│ │ │ ├── velodyne
│ ├── waymo
│ │ ├── waymo_format
│ │ │ ├── training
│ │ │ ├── validation
│ │ │ ├── testing
│ │ │ ├── gt.bin
│ │ ├── kitti_format
│ │ │ ├── ImageSets
│ ├── lyft
│ │ ├── v1.01-train
│ │ │ ├── v1.01-train (train_data)
│ │ │ ├── lidar (train_lidar)
│ │ │ ├── images (train_images)
│ │ │ ├── maps (train_maps)
│ │ ├── v1.01-test
│ │ │ ├── v1.01-test (test_data)
│ │ │ ├── lidar (test_lidar)
│ │ │ ├── images (test_images)
│ │ │ ├── maps (test_maps)
│ │ ├── train.txt
│ │ ├── val.txt
│ │ ├── test.txt
│ │ ├── sample_submission.csv
│ ├── scannet
│ │ ├── meta_data
│ │ ├── scans
│ │ ├── batch_load_scannet_data.py
│ │ ├── load_scannet_data.py
│ │ ├── scannet_utils.py
│ │ ├── README.md
│ ├── sunrgbd
│ │ ├── OFFICIAL_SUNRGBD
│ │ ├── matlab
│ │ ├── sunrgbd_data.py
│ │ ├── sunrgbd_utils.py
│ │ ├── README.md

(以上数据集不用全需要的,自己需要哪个组织哪个)

然后利用BEVFusion/tools/create_data.py脚本组织文件就行了,放一下组织nuScenes数据集成功的截图吧

bevfusion环境配置,深度学习,python,pytorch

三、训练与测试

1、分布式训练

# first train camera stream
./tools/dist_train.sh configs/bevfusion/cam_stream/bevf_pp_4x8_2x_nusc_cam.py 8
# then train LiDAR stream
./tools/dist_train.sh configs/bevfusion/lidar_stream/hv_pointpillars_secfpn_sbn-all_4x8_2x_nus-3d.py 8
# then train BEVFusion
./tools/dist_train.sh configs/bevfusion/bevf_pp_2x8_1x_nusc.py 8

./tools/dist_train.sh configs/bevfusion/cam_stream/bevf_pp_4x8_2x_nusc_cam.py 8中,8代表GPU个数

使用sh文件进行训练和测试时,可能会遇到无权限的问题,使用chmod 777 tools/dist_train.sh进行权限更改即可
bevfusion环境配置,深度学习,python,pytorch

其中,配置文件我就不再叙述,可以使用官方的简单测试,如果需要使用自己的配置文件,请参考mmdetection3d官方文档

值得注意的是,我在使用分布式和非分布式方法做测试的时候,非分布式运行正常,分布式仍然提示找不到数据集,我搜寻资料得知是因为工作路径的原因导致的,我用print(os.getcwd())打印了一下,发现使用非分布式训练时,工作路径/home/wistful/work/my_bevfusion/mmdetection3d/tools下,即在BEVFusion/mmdetection3d/tools下,而使用分布式训练时,工作路径在/home/wistful/work/my_bevfusion下,即在BEVFusion根目录下。所以我使用os.chdir('/home/wistful/work/my_bevfusion/mmdetection3d/tools')将工作路径改变了一下,问题解决
bevfusion环境配置,深度学习,python,pytorch

2、非分布式训练

直接在pycharm中根据各参数设置一下,训练即可,不再叙述。

3、测试

./tools/dist_test.sh configs/bevfusion/bevf_pp_2x8_1x_nusc.py ./work_dirs/bevfusion_pp.pth 8 --eval bbox
 # 前者是配置文件,后者是GPU个数

# 如需可视化
./tools/dist_test.sh configs/bevfusion/bevf_pp_2x8_1x_nusc.py ./work_dirs/bevfusion_pp.pth 8 --eval bbox --show-dir YourVisualResultsDir --show --eval bbox #根据test.py的参数看一下

可视化结果会保存在你指定的目录下,如下所示
bevfusion环境配置,深度学习,python,pytorch
导入CloudCampare查看
bevfusion环境配置,深度学习,python,pytorch文章来源地址https://www.toymoban.com/news/detail-780563.html

到了这里,关于BEVFusion(北大&阿里)环境搭建教程的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • [论文阅读]BEVFusion——基于统一BEV特征的多任务多传感器融合

    BEVFusion: Multi-Task Multi-Sensor Fusion with Unified Bird’s-Eye View Representation 基于统一BEV特征的多任务多传感器融合 论文网址:BEVFusion 代码:BEVFusion BEVFusion: Multi-Task Multi-Sensor Fusion with Unified Bird’s-Eye View Representation: 问题背景和动机 多传感器融合对于精确可靠的自动驾驶系统至关重要

    2024年02月07日
    浏览(56)
  • 【论文阅读】以及部署BEVFusion: A Simple and Robust LiDAR-Camera Fusion Framework

    BEVFusion: A Simple and Robust LiDAR-Camera Fusion Framework BEVFusion:一个简单而强大的LiDAR-相机融合框架 NeurIPS 2022 多模态传感器融合意味着信息互补、稳定,是自动驾驶感知的重要一环,本文注重工业落地,实际应用 融合方案: 前融合(数据级融合)指通过空间对齐直接融合不同模态的

    2024年02月04日
    浏览(49)
  • 『Linux』Linux环境搭建 | 阿里云云服务器白嫖 | Xshell环境配置

    🔥 博客主页 : 小羊失眠啦 🔖 系列专栏 : C语言 、 Linux 🌥️ 每日语录 : 时间,都是公平的,不公平的,只是现在的自己,对未来的自己。 ❤️ 感谢大家点赞👍收藏⭐评论✍️ 前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家

    2024年02月08日
    浏览(65)
  • 搭建Flutter开发环境、从零基础到精通(文末送书【北大出版社】)

    目录 搭建开发环境 1. 下载Flutter SDK 2. 设置镜像地址及环境变量 3. 安装与设置Android Studio 4. 安装Visual Studio Code与Flutter开发插件 5. IDE的使用和配置 6. 安装Xcode 7. 检查Flutter开发环境 好书推荐 内容简介 作者简介 Flutter可以跨平台运行在Windows、macOS、Linux等系统上。接下来介绍如

    2024年02月08日
    浏览(70)
  • 【前端开发环境安装、配置、项目搭建全教程】

    简单的说 Node.js 就是运行在服务端的 JavaScrip,基于 Chrome JavaScript 运行时建立的一个平台,Node.js 是一个事件驱动 I/O 服务端 JavaScript 环境,基于 Google 的 V8 引擎,V8 引擎执行 Javascript 的速度非常快,性能非常好。 1.node.js官网下载:下载地址 2.依据自己电脑Windows、macOS选择安装

    2024年03月13日
    浏览(64)
  • Visual Studio搭建C++环境 配置教程

    1、下载软件 官网下载需要安装的版本Visual Studio: 面向软件开发人员和 Teams 的 IDE 和代码编辑器,目前最新版本更新到2022。  2、安装软件 双击下载的安装文件,弹出安装界面, 选择工作负载,勾选 使用C++的桌面开发 和 Visual Studio扩展开发 。我本地已经装了vs2019,直接选择

    2023年04月08日
    浏览(99)
  • Spark环境搭建安装及配置详细步骤(保姆教程)

    1 Spark-Local 模式  1.1 解压缩文件  将 spark-2.1.1-bin-hadoop3.2.tgz 文件上传到 Linux 并解压缩,放置在指定位置,路径中。  1.2 启动 Local 环境  1) 进入解压缩后的路径,执行如下指令   2) 启动成功后,可以输入网址进行 Web UI 监控页面访问   1.4 退出本地模式  按键 Ctrl+C 或输入

    2024年02月02日
    浏览(55)
  • PyCharm 开发环境搭建指南:安装、配置及基础使用教程

    数据来源 Pycharm集成开发工具(DE),是当下全球Pthn开发者, 使用最频繁的工具软件 。 绝大多数的 Python程序,都是在 Pycharm工具内完成的开发。 Pycharm工具下载 首先,我们先下载并安装它:打开网站:下载PyCharm:JetBrains为专业开发者提供的Python IDE  迅雷下载: https://download.

    2024年04月17日
    浏览(66)
  • HT32合泰单片机开发环境搭建和配置教程

    HT32合泰(Holtek)单片机开发环境搭建安装教程 最近在准备合泰杯的比赛,在看合泰官方的PPT和数据手册学习,顺便做个合泰单片机的开发环境搭建教程。 合泰杯比赛发放的开发板是ESK32-30501,用的单片机是HT32F52352。 合泰杯官网地址:https://url.zeruns.tech/S7xu8 合泰官方HT32F52352授课

    2024年02月02日
    浏览(41)
  • 二:原神本地服务器(sifu)搭建环境配置教程第二篇

    安装jdk 双击msi安装文件,一路到底就欧克,傻瓜式安装。  安装数据库 也是一路yes,后面在安装界面会有一个询问你是否安装最新版,可选可不选,不选安装会快些 中间提示服务启动不成功也无所谓,可以忽略。后面会教你怎么开  安装代理器  双击开始安装一路yes就行

    2024年02月13日
    浏览(54)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包