PyTorch+PyG实现图神经网络经典模型目录

这篇具有很好参考价值的文章主要介绍了PyTorch+PyG实现图神经网络经典模型目录。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

pyg 提供的现有模型,图神经网络,pytorch,神经网络,python,人工智能,深度学习

前言

大家好,我是阿光。

本专栏整理了《图神经网络代码实战》,内包含了不同图神经网络的相关代码实现(PyG以及自实现),理论与实践相结合,如GCN、GAT、GraphSAGE等经典图网络,每一个代码实例都附带有完整的代码。

正在更新中~ ✨

pyg 提供的现有模型,图神经网络,pytorch,神经网络,python,人工智能,深度学习

🚨 我的项目环境:

  • 平台:Windows10
  • 语言环境:python3.7
  • 编译器:PyCharm
  • PyTorch版本:1.11.0
  • PyG版本:2.1.0

🌠 『精品学习专栏导航帖』

  • 🐧【Matplotlib绘制图像目录】Python数据可视化之美🐧

  • 🎠【Pandas数据处理100例目录】Python数据分析玩转Excel表格数据🎠

  • 🐳最适合入门的100个深度学习实战项目🐳

  • 🐙【PyTorch深度学习项目实战100例目录】项目详解 + 数据集 + 完整源码🐙

  • 🐶【机器学习入门项目10例目录】项目详解 + 数据集 + 完整源码🐶

  • 🦜【机器学习项目实战10例目录】项目详解 + 数据集 + 完整源码🦜

  • 🐌Java经典编程100例🐌

  • 🦋Python经典编程100例🦋

  • 🦄蓝桥杯历届真题题目+解析+代码+答案🦄

  • 🐯【2023王道数据结构目录】课后算法设计题C、C++代码实现完整版大全🐯


对于本专栏的网络模型,分别使用了三种实现方式 PyG框架实现PyTorch实现Message Passing消息传递机制实现,小伙伴可以按照自己的能力以及需求学习不同的实现方式。

注意 🚨:本目录中已存在的链接博文已全部写好,例如 + (一):节点分类 这类带有删除线的文章表示正在更新中,如果写完会去掉删除线,点击出现404表示文章还没有发布,后续根据情况陆续发布。

🌈『目录』


📢 PyG算子、数据集介绍

  • (一):PyG内置常见图数据集一览表
  • (二):PyG图神经网络算子一览表

📢 图神经网络常见任务与应用场景

  • (一):节点分类(PyG基于GCN实现Cora节点分类任务)
  • (二):图分类(PyG基于GCN实现MUTAG图分类任务)
    + (三):链路预测
    + (四):异常检测
    + (五):社区检测

📢 图嵌入学习(Graph Embedding)

  • (一):DeepWalk(PyG基于DeepWalk实现节点分类及其可视化)
  • (二):Node2Vec(PyG基于Node2Vec实现节点分类及其可视化)
  • (三):MetaPath2Vec(PyG基于MetaPath2Vec实现节点分类及其可视化)
    + (三):LINE

📢 图池化(Graph Pooling)

  • (一):EdgePool(Pytorch+PyG实现EdgePool实现图分类)
  • (二):TopKPool(Pytorch+PyG实现TopKPool实现图分类)
  • (三):SAGPool(Pytorch+PyG实现SAGPool实现图分类)
  • (四):ASAPool(Pytorch+PyG实现ASAPool实现图分类)

📢 MLP

  • (一):Pytorch+PyG实现MLP(基于PyG实现)
  • (二):Pytorch实现MLP(基于PyTorch实现)

📢 GCN

  • (一):Pytorch+PyG实现GCN(基于PyG实现)
  • (二):Pytorch实现GCN(基于PyTorch实现)
  • (三):Pytorch实现GCN(基于Message Passing消息传递机制实现)

📢 GAT

  • (一):Pytorch+PyG实现GAT(基于PyG实现)
  • (二):Pytorch实现GAT(基于PyTorch实现)
  • (三):Pytorch实现GAT(基于Message Passing消息传递机制实现)

📢 GIN

  • (一):Pytorch+PyG实现GIN(基于PyG实现)
  • (二):Pytorch实现GIN(基于PyTorch实现)
  • (三):Pytorch实现GIN(基于Message Passing消息传递机制实现)

📢 GraphSAGE

  • (一):Pytorch+PyG实现GraphSAGE(基于PyG实现)
  • (二):Pytorch实现GraphSAGE(基于PyTorch实现)
  • (三):Pytorch实现GraphSAGE(基于Message Passing消息传递机制实现)

📢 EdgeCNN

  • (一):Pytorch+PyG实现EdgeCNN(基于PyG实现)
  • (二):Pytorch实现EdgeCNN(基于PyTorch实现)
  • (三):Pytorch实现EdgeCNN(基于Message Passing消息传递机制实现)

📢 GraphConv

  • (一):Pytorch+PyG实现GraphConv(基于PyG实现)
  • (二):Pytorch实现GraphConv(基于PyTorch实现)
  • (三):Pytorch实现GraphConv(基于Message Passing消息传递机制实现)

注意🚨:所有文章使用的图数据是经典的 Cora 数据集,定义的训练轮数(200轮)以及损失函数优化器都是一致的,由于图网络很容易过拟合导致训练集的分类精度达到 99.9%,所以下表中显示的数据都是基于测试集的。文章来源地址https://www.toymoban.com/news/detail-780571.html

Accuracy Loss
MLP 0.1800 1.9587
GCN 0.7200 1.3561
GAT 0.7810 1.0362
GIN 0.7650 0.9645
GraphSAGE 0.7060 1.2712
EdgeCNN 0.3790 1.7529
GraphConv 0.6030 1.2378

到了这里,关于PyTorch+PyG实现图神经网络经典模型目录的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Python基于PyTorch实现卷积神经网络分类模型(CNN分类算法)项目实战

    说明:这是一个机器学习实战项目(附带 数据+代码+文档+视频讲解 ),如需 数据+代码+文档+视频讲解 可以直接到文章最后获取。 卷积神经网络,简称为卷积网络,与普通神经网络的区别是它的卷积层内的神经元只覆盖输入特征局部范围的单元,具有稀疏连接(sparse connec

    2024年02月15日
    浏览(47)
  • Python基于PyTorch实现卷积神经网络回归模型(CNN回归算法)项目实战

    说明:这是一个机器学习实战项目(附带 数据+代码+文档+视频讲解 ),如需 数据+代码+文档+视频讲解 可以直接到文章最后获取。 卷积神经网络,简称为卷积网络,与普通神经网络的区别是它的卷积层内的神经元只覆盖输入特征局部范围的单元,具有稀疏连接(sparse connec

    2024年02月15日
    浏览(45)
  • Python基于PyTorch实现循环神经网络分类模型(LSTM分类算法)项目实战

    说明:这是一个机器学习实战项目(附带 数据+代码+文档+视频讲解 ),如需 数据+代码+文档+视频讲解 可以直接到文章最后获取。 LSTM网络是目前更加通用的循环神经网络结构,全称为Long Short-Term Memory,翻译成中文叫作“长‘短记忆’”网络。读的时候,“长”后面要稍

    2024年02月16日
    浏览(48)
  • Python基于PyTorch实现循环神经网络回归模型(LSTM回归算法)项目实战

    说明:这是一个机器学习实战项目(附带 数据+代码+文档+视频讲解 ),如需 数据+代码+文档+视频讲解 可以直接到文章最后获取。 LSTM网络是目前更加通用的循环神经网络结构,全称为Long Short-Term Memory,翻译成中文叫作“长‘短记忆’”网络。读的时候,“长”后面要稍

    2024年02月16日
    浏览(53)
  • 卷积神经网络CNN的经典模型

    ILSVRC是一项基于 ImageNet 数据库的国际大规模视觉识别挑战赛(ImageNet Large Scale Visual Recognition Challenge,ILSVRC) (1)1958年,Rosenblatt发明了感知机。用于对输入的多维数据进行二分类且能够使用梯度下降法自动更新权值。 缺点:只能处理线性分类问题。 (2)1986年,Geoffrey Hi

    2024年02月07日
    浏览(36)
  • Python深度学习026:基于Pytorch的典型循环神经网络模型RNN、LSTM、GRU的公式及简洁案例实现(官方)

    循环神经网络(也有翻译为递归神经网络)最典型的三种网络结构是: RNN(Recurrent Neural Network,循环神经网络) LSTM(Long Short-Term Memory,长短期记忆网络) GRU(Gate Recurrent Unit,门控循环单元) 理解参数的含义非常重要,否则,你不知道准备什么维度的输入数据送入模型 先

    2023年04月22日
    浏览(37)
  • PyTorch学习之:高级神经网络模型和技术

    构建和应用卷积神经网络(CNN)进行图像分类是深度学习中的一个核心任务。这个过程涉及到定义网络架构、数据准备、模型训练、评估和应用等多个步骤。下面,我将详细解释这些步骤: 1. 定义CNN架构 CNN通常包含以下几种类型的层: 卷积层 (Convolutional Layers):负责提取

    2024年04月10日
    浏览(39)
  • 人工智能(Pytorch)搭建模型6-使用Pytorch搭建卷积神经网络ResNet模型

    大家好,我是微学AI,今天给大家介绍一下人工智能(Pytorch)搭建模型6-使用Pytorch搭建卷积神经网络ResNet模型,在本文中,我们将学习如何使用PyTorch搭建卷积神经网络ResNet模型,并在生成的假数据上进行训练和测试。本文将涵盖这些内容:ResNet模型简介、ResNet模型结构、生成假

    2024年02月06日
    浏览(73)
  • PyTorch深度学习实战(1)——神经网络与模型训练过程详解

    人工神经网络 ( Artificial Neural Network , ANN ) 是一种监督学习算法,其灵感来自人类大脑的运作方式。类似于人脑中神经元连接和激活的方式,神经网络接受输入,通过某些函数在网络中进行传递,导致某些后续神经元被激活,从而产生输出。函数越复杂,网络对于输入的数据拟

    2024年02月06日
    浏览(47)
  • 【AI】《动手学-深度学习-PyTorch版》笔记(十八):卷积神经网络模型

    发布时间:1989年 模型目的:识别手写数字 1.3.1 相关函数原型 1)nn.Conv2d:卷积层

    2024年02月13日
    浏览(73)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包