leetcode刷题之背包问题(01背包)

这篇具有很好参考价值的文章主要介绍了leetcode刷题之背包问题(01背包)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

01 背包

概念:有n件物品和一个最多能背重量为w 的背包。第i件物品的重量是 w e i g h t [ i ] weight[i] weight[i],得到的价值是 v a l u e [ i ] value[i] value[i]。每件物品只能用一次,求解将哪些物品装入背包里物品价值总和最大。

方法1:暴力回溯法
方法2:动态规划

三个物品,物品的重量分别为{1,3,4},物品的价值分别为{15,20,30};背包最大容量为4。
leetcode 01背包,C++刷题,leetcode,动态规划,算法

(一)二维dp数组
  1. 确定dp数组以及下标的含义: d p [ i ] [ j ] dp[i][j] dp[i][j]代表从下标为[0,i]的物品中任意取,放到容量为j的背包里,价值总和最大是多少。
  2. 确定递推公式
  • 不放物品i的最大价值: d p [ i − 1 ] [ j ] dp[i-1][j] dp[i1][j]
  • 放物品i的最大价值(也就是背包容量减去物品i的容量所能放的最大价值加上物品 i 的价值):
    d p [ i − 1 ] [ j − w e i g h t [ i ] ] dp[i - 1][j - weight[i]] dp[i1][jweight[i]]为背包容量为 j − w e i g h t [ i ] j - weight[i] jweight[i]的时候不放物品i的最大价值,那么 d p [ i − 1 ] [ j − w e i g h t [ i ] ] + v a l u e [ i ] dp[i - 1][j - weight[i]] + value[i] dp[i1][jweight[i]]+value[i](物品 i i i的价值)就是背包放物品 i i i得到的最大价值。
    所以,递推公式为: d p [ i ] [ j ] = m a x ( d p [ i − 1 ] [ j ] , d p [ i − 1 ] [ j − w e i g h t [ i ] ] + v a l u e [ i ] ) dp[i][j]=max(dp[i - 1][j],dp[i - 1][j - weight[i]] + value[i]) dp[i][j]=max(dp[i1][j],dp[i1][jweight[i]]+value[i])
  1. dp数组如何初始化
    首先从 d p [ i ] [ j ] dp[i][j] dp[i][j]的定义出发,如果背包容量j为0的话,即 d p [ i ] [ 0 ] dp[i][0] dp[i][0],无论是选取哪些物品,背包价值总和一定为0。如图:
    leetcode 01背包,C++刷题,leetcode,动态规划,算法
    初始化情况如下:
    leetcode 01背包,C++刷题,leetcode,动态规划,算法
    d p [ 0 ] [ j ] dp[0][j] dp[0][j] d p [ i ] [ 0 ] dp[i][0] dp[i][0]都已经初始化了,那么其他下标应该初始化多少呢?

其实从递归公式: d p [ i ] [ j ] = m a x ( d p [ i − 1 ] [ j ] , d p [ i − 1 ] [ j − w e i g h t [ i ] ] + v a l u e [ i ] ) dp[i][j] = max(dp[i-1][j], dp[i-1][j - weight[i]] + value[i]) dp[i][j]=max(dp[i1][j],dp[i1][jweight[i]]+value[i]); d p [ i − 1 ] [ j ] 和 d p [ i − 1 ] [ j − w e i g h t [ i ] ] dp[i-1][j]和dp[i - 1][j - weight[i]] dp[i1][j]dp[i1][jweight[i]]分别在dp[i][j]的正上方和左上角方向,可以看出 d p [ i ] [ j ] dp[i][j] dp[i][j] 是由左上方和正上方数值推导出来了,那么其他下标初始为什么数值都可以,因为都会被覆盖。

初始-1,初始-2,初始100,都可以!但只不过一开始就统一把dp数组统一初始为0会更方便一些,如下图所示。
leetcode 01背包,C++刷题,leetcode,动态规划,算法

// 初始化 dp
vector<vector<int>> dp(weight.size(), vector<int>(bagweight + 1, 0));
//weight.size()是指有多少物品也就是多少行,上一行是初始dp[i][j]全为0;
//bagweight是背包容量
for (int j = weight[0]; j <= bagweight; j++) 
{
    dp[0][j] = value[0];//初始化二维数组的第一行
}
  1. 确定遍历顺序(两层for循环)
    先遍历物品还是先遍历背包重量呢?其实都可以!但是先遍历物品更好理解。
    (1)先遍历物品
// weight数组的大小size 就是物品个数
for(int i = 1; i < weight.size(); i++) // 遍历物品
{ 
    for(int j = 0; j <= bagweight; j++) // 遍历背包容量
    { 
        if (j < weight[i]) dp[i][j] = dp[i - 1][j]; 
//当背包容量j小于物品i的重量weight[i]时,那就去掉物品i
        else dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);
    }
}

(2)先遍历背包

// weight数组的大小 就是物品个数
for(int j = 0; j <= bagweight; j++) 
{ // 遍历背包容量
    for(int i = 1; i < weight.size(); i++) 
    { // 遍历物品
        if (j < weight[i]) dp[i][j] = dp[i - 1][j];
        else dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);
    }
}
  1. 举例推导dp数组
    leetcode 01背包,C++刷题,leetcode,动态规划,算法
void test() 
{
    vector<int> weight = {1, 3, 4};
    vector<int> value = {15, 20, 30};
    int bagweight = 4;
    // 二维数组
    vector<vector<int>> dp(weight.size(), vector<int>(bagweight + 1, 0));
    // 初始化
    for (int j = weight[0]; j <= bagweight; j++) 
    {
        dp[0][j] = value[0];
    }
    // weight数组的大小 就是物品个数
    for(int i = 1; i < weight.size(); i++) 
    { // 遍历物品
        for(int j = 0; j <= bagweight; j++) 
        { // 遍历背包容量
            if (j < weight[i]) dp[i][j] = dp[i - 1][j];
            else dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);
        }
    }
    cout << dp[weight.size() - 1][bagweight] << endl;
}

int main() 
{
    test();
}
(二)一维dp数组(滚动数组)
  1. 确定dp数组的定义:在一维dp数组中,dp[j]表示:容量为j的背包,所背的物品价值最大为dp[j]。
  2. 一维dp数组的递推公式
    dp[j]可以通过 d p [ j − w e i g h t [ i ] ] dp[j - weight[i]] dp[jweight[i]]推导出来, d p [ j − w e i g h t [ i ] ] dp[j - weight[i]] dp[jweight[i]]表示容量为 j − w e i g h t [ i ] j - weight[i] jweight[i]的背包所背的最大价值。 d p [ j − w e i g h t [ i ] ] + v a l u e [ i ] dp[j - weight[i]] + value[i] dp[jweight[i]]+value[i]表示容量为j - 物品i重量的背包加上物品i的价值。(也就是容量为j的背包,放入物品i了之后的价值即: d p [ j ] ) dp[j]) dp[j]
    此时dp[j]有两个选择,一个是取dp[j]相当于二维dp数组中的 d p [ i − 1 ] [ j ] dp[i-1][j] dp[i1][j],即不放物品i;一个是取 d p [ j − w e i g h t [ i ] ] + v a l u e [ i ] dp[j - weight[i]] + value[i] dp[jweight[i]]+value[i],即放物品i,指定是取最大的,毕竟是求最大价值。
    所以,递推公式为: d p [ j ] = m a x ( d p [ j ] , d p [ j − w e i g h t [ i ] ] + v a l u e [ i ] ) dp[j] = max(dp[j], dp[j - weight[i]] + value[i]) dp[j]=max(dp[j],dp[jweight[i]]+value[i])
    可以看出相对于二维dp数组的写法,就是把dp[i][j]中i的维度去掉了。
  3. 一维dp数组如何初始化
    dp[j]表示:容量为j的背包,所背的物品价值可以最大为dp[j],那么dp[0]就应该是0,因为背包容量为0所背的物品的最大价值就是0。
    那么dp数组除了下标0的位置,初始为0,其他下标应该初始化多少呢?看一下递归公式:dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);dp数组在推导的时候一定是取价值最大的数,如果题目给的价值都是正整数那么非0下标都初始化为0就可以了。
  4. 一维dp数组遍历顺序
for(int i = 0; i < weight.size(); i++) 
{ // 遍历物品
    for(int j = bagWeight; j >= weight[i]; j--) 
    { // 遍历背包容量
        dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
    }
}

这里大家发现和二维dp的写法中,遍历背包的顺序是不一样的!二维dp遍历的时候,背包容量是从小到大,而一维dp遍历的时候,背包是从大到小。倒序遍历是为了保证物品 i 只被放入一次!但如果一旦正序遍历了,那么物品0就会被重复加入多次!
5. 举例推导dp数组
一维dp,分别用物品0,物品1,物品2 来遍历背包,最终得到结果如下:
leetcode 01背包,C++刷题,leetcode,动态规划,算法文章来源地址https://www.toymoban.com/news/detail-781150.html

void test() 
{
    vector<int> weight = {1, 3, 4};
    vector<int> value = {15, 20, 30};
    int bagWeight = 4;
    // 初始化
    vector<int> dp(bagWeight + 1, 0);
    for(int i = 0; i < weight.size(); i++) 
    { // 遍历物品
        for(int j = bagWeight; j >= weight[i]; j--) 
        { // 遍历背包容量
            dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
        }
    }
    cout << dp[bagWeight] << endl;
}
int main() 
{
    test();
}

到了这里,关于leetcode刷题之背包问题(01背包)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 力扣刷题-动态规划算法3:完全背包问题

    问题描述: 1)有N件物品和一个最多能背重量为W的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。 2) 每件物品都有无限个(也就是可以放入背包多次) (比0-1背包多出的条件) 3) 求解将哪些物品装入背包里物品价值总和最大。 求解步骤: 1)首先遍历物品,然

    2023年04月13日
    浏览(58)
  • 算法学习17-动态规划01:背包问题

    提示:以下是本篇文章正文内容: 提示:这里对文章进行总结: 💕💕💕

    2024年04月27日
    浏览(53)
  • 【动态规划】01背包问题——算法设计与分析

    若超市允许顾客使用一个体积大小为13的背包,选择一件或多件商品带走,则如何选择可以使得收益最高? 商品 价格 体积 啤酒 24 10 汽水 2 3 饼干 9 4 面包 10 5 牛奶 9 4 0-1 Knapsack Problem 输入: quad - n n n 个商品组成集合 O O O ,每个商品有属性价格 p i p_i p i ​ 和体积 v i v_i v

    2024年02月04日
    浏览(79)
  • 【LeetCode动态规划#06】分割等和子集(01背包问题一维写法实战)

    分割等和子集 给你一个 只包含正整数 的 非空 数组 nums 。请你判断是否可以将这个数组分割成两个子集,使得两个子集的元素和相等。 示例 1: 输入:nums = [1,5,11,5] 输出:true 解释:数组可以分割成 [1, 5, 5] 和 [11] 示例 2: 输入:nums = [1,2,3,5] 输出:false 解释:数组不能分割

    2023年04月09日
    浏览(66)
  • 【Java实现】动态规划算法解决01背包问题

    1、问题描述: 一个旅行者有一个最多能装m公斤的背包,现在有n中物品,每件的重量分别是W1、W2、……、Wn,每件物品的价值分别为C1、C2、……、Cn, 需要将物品放入背包中,要怎么样放才能保证背包中物品的总价值最大? 2、动态规划算法的概述 1)动态规划(Dynamic Progra

    2023年04月09日
    浏览(57)
  • 算法分析与设计——动态规划求解01背包问题

    假设有四个物品,如下图,背包总容量为8,求背包装入哪些物品时累计的价值最多。 我们使用动态规划来解决这个问题,首先使用一个表格来模拟整个算法的过程。 表格中的信息表示 指定情况下能产生的最大价值 。例如, (4, 8)表示在背包容量为8的情况下,前四个物品的最

    2024年02月04日
    浏览(70)
  • 算法套路十四——动态规划之背包问题:01背包、完全背包及各种变形

    如果对递归、记忆化搜索及动态规划的概念与关系不太理解,可以前往阅读算法套路十三——动态规划DP入门 背包DP介绍:https://oi-wiki.org/dp/knapsack/ 0-1背包:有n个物品,第i个物品的体积为w[i],价值为v[i],每个物品至多选一个, 求体积和不超过capacity时的最大价值和,其中i从

    2024年02月10日
    浏览(60)
  • C++算法初级11——01背包问题(动态规划2)

    辰辰采药 辰辰是个天资聪颖的孩子,他的梦想是成为世界上最伟大的医师。为此,他想拜附近最有威望的医师为师。医师为了判断他的资质,给他出了一个难题。医师把他带到一个到处都是草药的山洞里对他说:“孩子,这个山洞里有一些不同的草药,采每一株都需要一些时

    2024年02月02日
    浏览(50)
  • 【LeetCode动态规划#07】01背包问题一维写法(状态压缩)实战,其二(目标和、零一和)

    力扣题目链接(opens new window) 难度:中等 给定一个非负整数数组,a1, a2, ..., an, 和一个目标数,S。现在你有两个符号 + 和 -。对于数组中的任意一个整数,你都可以从 + 或 -中选择一个符号添加在前面。 返回可以使最终数组和为目标数 S 的所有添加符号的方法数。 示例: 输入

    2023年04月18日
    浏览(63)
  • 【算法|动态规划 | 01背包问题No.2】AcWing 423. 采药

    个人主页:兜里有颗棉花糖 欢迎 点赞👍 收藏✨ 留言✉ 加关注💓本文由 兜里有颗棉花糖 原创 收录于专栏【手撕算法系列专栏】【AcWing算法提高学习专栏】 🍔本专栏旨在提高自己算法能力的同时,记录一下自己的学习过程,希望对大家有所帮助 🍓希望我们一起努力、成

    2024年02月06日
    浏览(50)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包