数据挖掘(2.1)--数据预处理

这篇具有很好参考价值的文章主要介绍了数据挖掘(2.1)--数据预处理。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

一、基础知识

1.数据的基本概念

1.1基础知识

数据数据对象(Data Objects)及其属性(Attributes)的集合。

数据对象(一条记录、一个实体、一个案例、一个样本等)是对一个事物或者物理对象的描述

数据对象的属性则是这个对象的性质或特征,例如一个人的肤色、眼球颜色等是这个人的属性。

数据挖掘数据预处理例子,数据挖掘,人工智能,数据挖掘,网络每一行为一条记录,每条记录即一个数据对象,代表一个用户的资料。而每一行的序号、男/女、收人、是否有配偶为数据对象的属性。而每一条记录的某一列即该对象属性的属性值,如:序号为一的对象“收入”属性的值为“10000”。

属性值是对一个属性所赋予的数值或符号,是属性的具体化。

1.2属性有不同类别

属性具有不同的类别,可以按照属性值的类型将属性类别分为4种:

  • (1)名称型属性(Nominal)。如身份证号码、眼球颜色和邮政编码等。
  • (2)顺序型属性(Ordinal)。如比赛排名、学分成绩和身高等。
  • (3)间隔型属性(Interval)。如日期间隔、摄氏和华氏温度等。
  • (4)比率型属性(Ratio)。如百分比和人口比例等。

一个属性属于以上4种属性的哪一种,取决于属性的属性值是否满足下列4种性质:区别性、有序性、可加性和乘除性。

名称型属性的属性值只满足区别性性质,即两个名称型属性的属性值可以判断相等或不等,但没有判断大小、加减乘除的意义。

顺序型属性的属性值除了满足区别性属性之外,也满足有序性。

间隔型属性的属性值满足区别性、有序性和可加性3种性质。

比率型属性的属性值满足以上全部4种性质。
属性除了以上分类之外,还有离散属性和连续属性之分。

离散属性只能从有限或可数的属性值集合中取值,通常可以用整数变量表示,如邮政编码、文档中的词数和身份证号码等。

二进制属性是离散属性的一个特例。连续属性与离散属性相对,可以从不可数无穷多个属性值中取值,通常取值范围为实数。实际中,通常只用有限多位来表示-一个数,因此连续属性在计算机中通常表示为浮点数。

1.3根据数据的组织方式和相对关系将数据呈现为以下形式

根据数据的组织方式和相对关系将数据呈现为以下形式: 

  • (1)记录数据。这种数据由一条条的记录组成,如记录数据、数据矩阵、文档数据和事务数据等。
  • (2)图数据。这种数据由记录(点)和记录之间的联系(边)组成,如万维网数据、化学分子结构数据等。
  • (3)有序数据。这种数据的记录之间存在时间和空间上的序关系,如序列数据、时间序列数据和空间数据等。

图数据和有序数据在孤立数据的基础上增加了数据之间的关联性,因此具有比孤立数据更加丰富的信息。由于图数据和有序数据的组织形式的特殊性,通常称对图数据进行的数据挖掘为图挖掘(GraphMining),称对序列数据进行的数据挖掘为序列挖掘(SequenceMining)。

记录数据

记录数据是数据集由一条一条记录组成数据,每条记录具有相同的属性集合。记录数
据是SQL数据库所使用的数据类型。
数据矩阵是记录数据的一种特例。当每个属性都是数值型属性的时候,这些数据对象就可以被看成空间中的点,每一个维度对应一个属性。这样的数据集可以用m*n的矩阵来表示,其中矩阵的行数m为记录的条数,矩阵的列数n为记录的属性个数。
文档数据是文档集合构成的数据集。在自然语言处理中,在“词袋模型”的假设下将一个文档中词出现的次数作为文档的属性是常见的做法。

交易数据是记录数据的一种特例,在交易数据中,每一条记录(交易)中包含若千个物品。例如超市的销售纪录。

数据挖掘数据预处理例子,数据挖掘,人工智能,数据挖掘,网络
超市销售记录

 

图数据

图数据由点与点之间的连线构成,通常用来表示具有某种关系的数据,如家谱图、分类体系图和互联网链接关系等。在万维网中,网页通常表示为HTML(超文本标记语言)格式,其中包含可以指向其他网页或站点的链接,如果把这些网页视为点,将链接视为有向边,则万维网数据可以看作一个有向图,也有无向图。

数据挖掘数据预处理例子,数据挖掘,人工智能,数据挖掘,网络

有序数据

有序数据是一种数据记录之间存在序关系的数据集,这种序关系体现在前后、时间或者空间上。交易序列数据是一种特殊的有序数据,其中每一个数据都是一个交易序列。

表2.4所示的超市销售记录序列数据中,每一行为一位顾客的购买记录序列,括号内是一次购买的物品清单,不同括号的先后顺序表示时间上的先后顺序。交易序列数据有助于挖掘在时间上具有先后的一些交易的性质,如重复购买,或关联商品。

数据挖掘数据预处理例子,数据挖掘,人工智能,数据挖掘,网络

2.为什么要进行数据预处理

最主要的原因是数据质量无法满足数据挖掘的要求,如数据可能具有某些不良特性,或者不符合后续挖掘的需要。一般来说,高质量的数据应该满足准确性、完整性和一致性的原则。数据质量的低劣甚至有着来自现实的原因。还有其他一些数据质量问题.如时效性、可信性、有价值、可解释性和可访问性等。

3.数据预处理的任务

数据预处理的主要任务包括数据清洗、数据集成、数据转换、数据归约和数据离散化等。
(1)数据清洗。对脏数据进行处理并去除这些不良特性的过程。脏数据是指包含噪声,存在缺失值.存在错误和不一致性的数据。
(2)数据集成。是将不同来源的数据集成到一起的过程,这些数据可能来自不同的数据库、数据报表和数据文件。数据集成需要解决数据在不同数据源中的格式和表示的不同,并整理为形式统一的数据。
(3)数据转换。是对数据的值进行转换的过程。在使用某些数据处理方法之前,如k均值聚类和贝叶斯分类,对数值进行转换非常必要。因为当数据的不同维度之间的数量级.差别很大的时候,分类和聚类的结果会变得非常不稳定,这时通常会对数据进行规范化,对数据值进行统- -的放缩。
(4)数据归约。是对数据的表示进行简化的技术。数据归约使得表示非常复杂的数据可以以更加简化的方式来表示。数据归约可以使得数据处理在计算效率、存储效率上获得.较大的提升,而不至于在挖掘分析性能上做出大的牺牲。
(5) 数据离散化。是对连续数据值进行离散化的过程。数据离散化有时也称为量化,数据在离散化过程中可能会损失部分信息,信息论中的率失真理论给出了量化过程中的信息损失与量化的位数的关系。文章来源地址https://www.toymoban.com/news/detail-781531.html

到了这里,关于数据挖掘(2.1)--数据预处理的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 数据挖掘 | 实验一 数据的清洗与预处理

    1)了解数据质量问题、掌握常用解决方法; 2)熟练掌握数据预处理方法,并使用Python语言实现; PC机 + Python3.7环境(pycharm、anaconda或其它都可以) 清洗与预处理的必要性 在实际数据挖掘过程中,我们拿到的初始数据,往往存在缺失值、重复值、异常值或者错误值,通常这

    2023年04月08日
    浏览(48)
  • 【数据挖掘 | 数据预处理】缺失值处理 & 重复值处理 & 文本处理 确定不来看看?

    🤵‍♂️ 个人主页: @AI_magician 📡主页地址: 作者简介:CSDN内容合伙人,全栈领域优质创作者。 👨‍💻景愿:旨在于能和更多的热爱计算机的伙伴一起成长!!🐱‍🏍 🙋‍♂️声明:本人目前大学就读于大二,研究兴趣方向人工智能硬件(虽然硬件还没开始玩,但一直

    2024年02月07日
    浏览(72)
  • 数据挖掘学习——数据预处理方法代码汇总(python)

    目录 一、归一化处理方法 (1)min-max方法(离散归一化) (2)零-均值规范化方法 (3)小数定标规范化 二、插值法 (1)拉格朗日插值法 三、相关性分析 (1)pearson相关性系数 (2)spearman相关性系数 四、主成分分析(PCA) 归一化常用方法有: (1)min-max方法(离散归一化

    2024年02月08日
    浏览(71)
  • 数据预处理在数据挖掘中的重要性

    数据挖掘作为从大量数据中提取有用信息和知识的过程,其结果的准确性和可靠性直接受到数据质量的影响。因此,数据预处理在数据挖掘中扮演着至关重要的角色。让我们探讨数据质量对数据挖掘结果的影响,并介绍常见的数据预处理方法以及它们如何提高数据挖掘的效果

    2024年03月20日
    浏览(47)
  • Python数据挖掘 数据预处理案例(以航空公司数据为例)

    1、数据清洗 2、数据集成 3、数据可视化 根据航空公司系统内的客户基本信息、乘机信息以及积分信息等详细数据,依据末次飞行日期( LAST_FLIGHT_DATE),以2014年3月31日为结束时间,选取宽度为两年的时间段作为分析观测窗口,抽取观测窗口2012年4月1日至2014年3月31日内有乘机记

    2024年02月04日
    浏览(42)
  • 数据挖掘实验(二)数据预处理【等深分箱与等宽分箱】

    在分箱前,一定要先排序数据,再将它们分到等深(等宽)的箱中。 常见的有两种分箱方法:等深分箱和等宽分箱。 等深分箱:按记录数进行分箱,每箱具有相同的记录数,每箱的记录数称为箱的权重,也称箱子的深度。 等宽分箱:在整个属性值的区间上平均分布,即每个

    2024年02月07日
    浏览(45)
  • GEO生信数据挖掘(六)实践案例——四分类结核病基因数据预处理分析

    前面五节,我们使用阿尔兹海默症数据做了一个数据预处理案例,包括如下内容: GEO生信数据挖掘(一)数据集下载和初步观察 GEO生信数据挖掘(二)下载基因芯片平台文件及注释 GEO生信数据挖掘(三)芯片探针ID与基因名映射处理 GEO生信数据挖掘(四)数据清洗(离群值

    2024年02月07日
    浏览(58)
  • GPT-4科研实践:数据可视化、统计分析、编程、机器学习数据挖掘、数据预处理、代码优化、科研方法论

    查看原文GPT4科研实践技术与AI绘图 GPT对于每个科研人员已经成为不可或缺的辅助工具,不同的研究领域和项目具有不同的需求。 例如在科研编程、绘图领域 : 1、编程建议和示例代码:  无论你使用的编程语言是Python、R、MATLAB还是其他语言,都可以为你提供相关的代码示例。

    2024年02月07日
    浏览(63)
  • 深度学习中用来训练的train.py 探究学习2.1( 数据预处理)

    下列为mmcls中数据预处理部分  train_pipeline是一个训练过程的配置列表,用于定义数据预处理的步骤。下面是train_pipeline中各个步骤的介绍: 1. LoadImageFromFile:从文件中加载图像。 2. RandomResizedCrop:随机缩放裁剪图像到指定大小。 3. RandomFlip:以一定的概率随机水平翻转图像。

    2024年02月04日
    浏览(57)
  • 【ARM 嵌入式 编译系列 2.1 -- GCC 预处理命令 #error 和 #warning 详细介绍 】

    在C语言中, #error 和 #warning 预处理指令可以用于在编译时生成错误或警告信息,通常用于调试或当代码中某些条件未满足时提醒开发者。当这些指令被编译器处理时,会自动包含出现这些指令的文件名和行号,所以你可以清楚地看到问题出现的位置。 #error 当编译器遇到 #e

    2024年01月22日
    浏览(54)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包