STM32的FSMC

这篇具有很好参考价值的文章主要介绍了STM32的FSMC。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

FSMC接口介绍

大容量,且引脚数在 100 脚以上的 STM32F103 芯片都带有 FSMC 接口。
FSMC,即灵活的静态存储控制器flexible static memory controller。

扩展内存

  • STM32 的 FSMC 接口支持包括 SRAM、NAND FLASH、NOR FLASH 和 PSRAM 等存储器。
    stm32 fsmc,嵌入式开发,stm32,单片机,arm

何为PSRAM

  • FSMC就是一个MCU与外部存储器(SRAM,FLASH等)读写数据的一个接口

FSMC内部原理

FSMC 的框图

stm32 fsmc,嵌入式开发,stm32,单片机,arm

  • NE[4-1] 片选,用来区分不同设备
  • NWE为写。
  • NOE为读
    • n低电平有效
    • o output
    • e 使能

驱动SRAM

  • FSMC驱动外部SRAM时,外部SRAM的控制一般有
    • 地址线(如A0-A25)
    • 数据线(如D0-D15)
    • 写信号(WE,即WR)
    • 读信号(OE,即RD)
    • 片选信号(CS)
    • 如果SRAM支持字节控制,那么还有UB/LB信号。

驱动TFTLCD

  • 真正在操作LCD的时候需要用到的就只有:

    • RS、D0~D15、WR、RD和CS。
  • 其操作时序和SRAM的控制完全类似,唯一不同就是TFTLCD有RS信号,但是没有地址信号。(所以将RS当做地址线来用)
    stm32 fsmc,嵌入式开发,stm32,单片机,arm
    stm32 fsmc,嵌入式开发,stm32,单片机,arm
    (该表格为F407的,与103不太一样,仅看个大概意思)

  • TFTLCD通过RS信号来决定传送的数据是数据还是命令,本质上可以理解为一个地址信号

    • 比如我们把*RS接在A0上面
    • 那么当FSMC控制器写地址0的时候,会使得A0变为0,对TFTLCD来说,就是写命令。而FSMC写地址1的时候,A0将会变为1,对TFTLCD来说,就是写数据了
    • 当然RS也可以接在其他地址线上,而探索者STM32F4把RS接在A6上面。
  • 因此,可以把TFTLCD当成一个SRAM来用,只不过这个SRAM有2个地址,这就是FSMC可以驱动LCD的原理。

FSMC内存划分

stm32 fsmc,嵌入式开发,stm32,单片机,arm

FSMC的分块

STM32的 FSMC将外部存储器划分为固定大小为 256M 字节的四个存储块(Bank),FSMC 总共管理 1GB 空间.
如下为FSMC在CPU中的地址映射划分。
stm32 fsmc,嵌入式开发,stm32,单片机,arm
各模块配置的地址范围
stm32 fsmc,嵌入式开发,stm32,单片机,arm

存储块1的介绍

stm32 fsmc,嵌入式开发,stm32,单片机,arm

每个区的地址范围可看下文

存储块1的分区

STM32 的 FSMC 存储块 1(Bank1)被分为 4 个区,每个区管理 64M 字节空间,每个区都有独立的寄存器对所连接的存储器进行配置。(所以它有四个不同的片选,可以接不同的外设)

存储块1的地址

Bank1 的 256M 字节空间由 28 根地址线(HADDR[27:0])寻址。
HADDR 是需要转换到外部设备的内部 AHB 总线地址,一个地址对应八位数据。
其中 HADDR[25:0]来自外部存储器地址FSMC_A[25:0],直接对应地址总线 。
HADDR[27:26]位用于选择四个存储块之一。
stm32 fsmc,嵌入式开发,stm32,单片机,arm

stm32 fsmc,嵌入式开发,stm32,单片机,arm
但[0:25]却需要根据不同位宽讨论。
不同区的地址范围
stm32 fsmc,嵌入式开发,stm32,单片机,arm

不同数据宽度对存储块1寻址的影响

stm32 fsmc,嵌入式开发,stm32,单片机,arm
需要或者可以访问的地址空间大小。
当Bank1接的是16位宽度存储器的时候:HADDR[25:1],FSMC_A[24:0]

  • 当psram地址为0x0001(16)时,对应ARMM地址0x000002(24)
  • 当psram地址为0x0002(16)时,对应ARMM地址0x000004(24)
    当Bank1接的是8位宽度存储器的时候:HADDR[25:0],FSMC_A[25:0]

不论外部接8位/16位宽设备,FSMC_A[0]永远接在外部设备地址A[0]

可以区分一下,FSMC即为外部存储器的地址,是FSMC端的,HADDR是AHB总线端的

CPU发出两个地址,去接受一个16位的数据,它不知道自己发出的两个地址会落到同一个位置。因为被右移了两位。
不论外部存储器的宽度是多少(16位或8位),FSMC_A[0]始终应该连到外部存储器的地址线A[0]

FSMC中地址与外设地址的对应关系

FSMC中的1G空间存储的是外设地址,当我们在存储块中的访问单元序号+1,对应的外设存储单元的访问地址就自加8(如果外设数据存储的数据宽度为8b的话)
stm32 fsmc,嵌入式开发,stm32,单片机,arm

FSMC相关寄存器

SRAM/NOR 闪存片选控制寄存器:FSMC_BCRx

stm32 fsmc,嵌入式开发,stm32,单片机,arm

该寄存器有1-4。

14 EXTMOD 扩展模式使能位

也就是是否允许读写不同的时序
○ 我们本章需要读写不同的时序,故该位需要设置为 1。
○ 当该位设置为0,读写就公用BTRx寄存器。

12 WREN写使能位。

我们需要向 TFTLCD 写数据,故该位必须设置为 1。

5-4 MWID[1:0]:存储器数据总线宽度

00,表示 8 位数据模式;
01 表示 16 位数据模式;
10和 11 保留。
○ 我们的 TFTLCD 是 16 位数据线,所以设置 WMID[1:0]=01。

3-2 MTYP[1:0]:存储器类型。

  • 00 表示 SRAM、ROM;
  • 01 表示 PSRAM;
  • 10 表示 NOR FLASH;11保留。

0 MBKEN:存储块使能位

SRAM/NOR 闪存片选时序寄存器:FSMC_BTRx

BTRx寄存器介绍

该寄存器有1-4。
stm32 fsmc,嵌入式开发,stm32,单片机,arm

如果 FSMC_BCRx 寄存器中设置了 EXTMOD 位,则有两个时序寄存器分别对应读(本寄存器)和写操作(FSMC_BWTRx 寄存器)。

29-28 ACCMOD[1:0]:访问模式。

00 表示访问模式 A;01 表示访问模式 B;
10 表示访问模式 C;11 表示访问模式 D
本章我们用到模式 A,故设置为 00。

15-8 DATAST[7:0]:数据保持时间。

0 为保留设置,其他设置则代表保持时间为: 
DATAST 个HCLK 时钟周期,最大为 255 个 HCLK 周期。
数据保持时间,等于: DATAST(+1)个HCLK时钟周期
DATAST最大为255。
对ILI9341来说,其实就是WR低电平持续时间,为15ns
不过ILI9320等则需要50ns。
考虑兼容性,对STM32F1,一个HCLK=13.8ns (1/72M),设置为3;
对STM32F4,一个HCLK=6ns(1/168M) ,设置为9。 
F4不加1

3-0 ADDSET[3:0]:地址建立时间。

其建立时间为:ADDSET 个 HCLK 周期,最大为 15 个 HCLK周期,每个周期4ns(1/25M)。
表示:ADDSET+1个HCLK周期,ADDSET最大为15。
对ILI9341来说,这里相当于WR高电平持续时间,为15ns。
同样考虑兼容ILI9320,对STM32F1,这里即便设置为1,WR也有100ns的高电平,我们这里设置为1。
而对STM32F4,则设置为8。 
F4不加1

地址建立时间

建立时间(Tsu:setuptime)是指在时钟沿到来之前数据从不稳定到稳定所需的时间
用于从外设,如TFTLCD读取到稳定的RS信号。
这段时间内,RDX和WRX均为无效电平。

数据保持时间

保持时间(Th:holdtime)是指数据稳定后保持的时间,如果保持时间不满足要求那么数据同样也不能被稳定的打入触发器。
NT35510数据锁存的时序图:
stm32 fsmc,嵌入式开发,stm32,单片机,arm
数据锁存可以让NT35510芯片识别稳定的数据。
为了我们识别到稳定可靠的数据,数据保持时间必须大于RDX低电平持续时间,即RDX的上升沿必须出现在地址保持时间之内。
在计算的时候,应该查看驱动外设的读写最小时间,然后除时钟周期即可。
ADDSET最小为250ns/HCLK,DATAST最小为150ns/HCLK。

SRAM/NOR 闪写时序寄存器:FSMC_BWTRx

stm32 fsmc,嵌入式开发,stm32,单片机,arm

  • 该寄存器在本章用作写操作时序控制寄存器

ACCMOD

ACCMOD 设置同 FSMC_BTRx 一模一样,同样是选择模式 A

  • 另外 DATAST 和ADDSET 则对应低电平和高电平持续时间
    ○ 对 ILI9341 来说,这两个时间只需要 15ns 就够了,比读操作快得多。
    ○ 所以我们这里设置 DATAST 为 3,即 4 个 HCLK 周期,时间约为 55ns(因为9320 等控制器,这个时间要求比较长,要 50ns)。
    ○ ADDSET(也存在性能问题)设置为 0,即 1 个 HCLK 周期,实际 WR 高电平时间大于 100ns。

寄存器组合

这里还要给大家做下科普,在 MDK 的寄存器定义里面,并没有定义 FSMC_BCRx、FSMC_BTRx、FSMC_BWTRx 等这个单独的寄存器,而是将他们进行了一些组合。
FSMC_BCRx 和 FSMC_BTRx,组合成 BTCR[8]寄存器组,他们的对应关系如下:
BTCR[0]对应 FSMC_BCR1,BTCR[1]对应 FSMC_BTR1
BTCR[2]对应 FSMC_BCR2,BTCR[3]对应 FSMC_BTR2
BTCR[4]对应 FSMC_BCR3,BTCR[5]对应 FSMC_BTR3
BTCR[6]对应 FSMC_BCR4,BTCR[7]对应 FSMC_BTR4
FSMC_BWTRx 则组合成 BWTR[7],他们的对应关系如下:
BWTR[0]对应 FSMC_BWTR1,BWTR[2]对应 FSMC_BWTR2,
BWTR[4]对应 FSMC_BWTR3,BWTR[6]对应 FSMC_BWTR4,
BWTR[1]、BWTR[3]和 BWTR[5]保留,没有用到。

FSMC的读写时序

模式

FSMC 的 NOR FLASH 控制器支持同步和异步突发两种访问方式。

  • 选用同步突发访问方式时,FSMC 将 HCLK(系统时钟)分频后,发送给外部存储器作为同步时钟信号 FSMC_CLK。此时需要的设置的时间参数有 2 个:
    • 1,HCLK 与 FSMC_CLK 的分频系数(CLKDIV),可以为 2~16 分频;
    • 2,同步突发访问中获得第 1 个数据所需要的等待延迟(DATLAT)。

对于异步突发访问方式,FSMC 主要设置 3 个时间参数:地址建立时间(ADDSET)、数据建立时间(DATAST)和地址保持时间(ADDHLD)。
stm32 fsmc,嵌入式开发,stm32,单片机,arm
模式A与模式1的最大区别在于:模式1中读写速度一样,模式A中读写速度不同。
模式A支持独立的读写时序控制,这个对我们驱动TFTLCD来说非常有用,因为TFTLCD在读的时候,一般比较慢,而在写的时候可以比较快,如果读写用一样的时序,那么只能以读的时序为基准,从而导致写的速度变慢。

FSMC与外设时序列保持一致

FSMC作为CPU与外部SRAM沟通的桥梁,那就得说他们两个人都认识的话——读写时序
对FSMC管理的变量Var进行读写就会引起FSMC产生读取SRAM中数据的时序,引发对SRAM的读写操作。
stm32 fsmc,嵌入式开发,stm32,单片机,arm

FSMC的模式A的读时序

stm32 fsmc,嵌入式开发,stm32,单片机,arm

NOE为读,NWE为写。
n低电平有效
o output
e 使能
nex 片选cs
最后的2HCLK是用于存储器将读取到的数据存入锁存器(即保存数据)用的。

FSMC的模式A的写时序

stm32 fsmc,嵌入式开发,stm32,单片机,arm

FSMC的配置步骤

TFTLCD液晶屏

屏幕介绍

TFTLCD即薄膜晶体管液晶显示器。它与无源TN-LCD、STN-LCD的简单矩阵不同,它在液晶显示屏的每一个象素上都设置有一个薄膜晶体管(TFT),可有效地克服非选通时的串扰,使显示液晶屏的静态特性与扫描线数无关,因此大大提高了图像质量。

TFTLCD具有:亮度好、对比度高、层次感强、颜色鲜艳等特点。是目前最主流的LCD显示器。广泛应用于电视、手机、电脑、平板等各种电子产品。

屏幕尺寸

ALIENTEK提供丰富的TFTLCD模块型号,供大家选择,目前有以下型号可选:
1,ATK-2.8寸 TFTLCD模块
分辨率:240320,驱动IC:ILI9341,电阻触摸屏,16位并口驱动(在用)
2,ATK-3.5寸 TFTLCD模块
分辨率:320
480,驱动IC:NT35310,电阻触摸屏,16位并口驱动
3,ATK-4.3寸 TFTLCD模块
分辨率:480800,驱动IC:NT35510,电容触摸屏,16位并口驱动
4,ATK-7寸 TFTLCD模块(V1版本)
分辨率:480
800,驱动IC:CPLD+SDRAM,电容触摸屏,16位并口驱动
5,ATK-7寸 TFTLCD模块(V2版本)
分辨率:480*800,驱动IC:SSD1963,电容触摸屏,8/9/12/16位并口驱动

2.8寸屏介绍

240*320分辨率
16位真彩显示(65536色)
自带电阻触摸屏
自带背光电路
模块是3.3V供电的,不支持5V电压的MCU,如果是5V MCU,必须在信号线串接120R电阻使用。

屏幕原理图

stm32 fsmc,嵌入式开发,stm32,单片机,arm
stm32 fsmc,嵌入式开发,stm32,单片机,arm
注意:DB1-DB8,DB10-DB17,总是按顺序连接MCU的D0~D15
LCD_CS:LCD片选信号
LCD_WR:LCD写信号
LCD_RD:LCD读信号
DB[17:1]:16位双向数据线。
LCD_RST:硬复位LCD信号
LCD_RS:命令/数据标志 (0:命令,1:数据)
BL_CTR:背光控制信号
T_MISO/T_MOSI/T_PEN/T_CS/T_CLK,触摸屏接口信号
stm32 fsmc,嵌入式开发,stm32,单片机,arm
(该表格为F407的,与103不太一样,仅看个大概意思)

  • TFTLCD通过RS信号来决定传送的数据是数据还是命令,本质上可以理解为一个地址信号
    • 比如我们把*RS接在A0上面
    • 那么当FSMC控制器写地址0的时候,会使得A0变为0,对TFTLCD来说,就是写命令。而FSMC写地址1的时候,A0将会变为1,对TFTLCD来说,就是写数据了
    • 当然RS也可以接在其他地址线上,而探索者STM32F4把RS接在A6上面。

用到的主要的线
stm32 fsmc,嵌入式开发,stm32,单片机,arm

8080并口 驱动 读写

介绍

stm32 fsmc,嵌入式开发,stm32,单片机,arm

读写

模块的8080并口读/写的过程为:
stm32 fsmc,嵌入式开发,stm32,单片机,arm

1.读数据:在RD的上升沿, 读取数据线上的数据(D[15:0]);
2.写数据:在WR的上升沿,使数据写入到ILI9341里面

并口写时序
stm32 fsmc,嵌入式开发,stm32,单片机,arm
并口读时序
stm32 fsmc,嵌入式开发,stm32,单片机,arm

读写LCD本质上是对寻址空间的某一个地址进行读写操作:

读:var=(uint32_t)0x6C000080;

写:(uint32_t)0x6C000080=var;

RS选择代码

Bank1.sector4就是从地址0X6C000000开始,而0X000007FE,则是A[10]的偏移量。
以A[10]为例,A[10]相对于Bank1.sector4的地址0X7FE换成二进制为:0b011111111110,而16位数据时,地址右移一位对齐,对应到地址引脚就是:A[10:0]=0b001111111111,此时A[10]是0
如果16位地址加1(对应到8位地址是加2,即0X7FE+0X02),那么:A[10:0]=0b010000000000,此时A[10]就是1了,即实现了对RS的0和1的控制。

//LCD地址结构体
typedefstruct
{
    vu16LCD_REG;
    vu16LCD_RAM;
}LCD_TypeDef;
//使用NOR/SRAM的Bank1.sector4,地址位HADDR[27,26]=11A10作为数据命令区分线
//注意设置时STM32内部会右移一位对其!
#define LCD_BASE((u32)(0x6C000000|0x000007FE))
#define LCD((LCD_TypeDef*)LCD_BASE)

将这个地址强制转换为LCD_TypeDef结构体地址,那么可以得到LCD->LCD_REG的地址就是0X6C00,07FE,对应A[10]的状态为0(即RS=0)
LCD->LCD_RAM的地址就是0X6C00,0800(结构体地址自增),对应A[10]的状态为1(即RS=1),

驱动时序

stm32 fsmc,嵌入式开发,stm32,单片机,arm
ILI9341_DS.pdf,232页
重点时序:
读ID低电平脉宽(trdl)
读ID高电平脉宽(trdh)
读FM低电平脉宽(trdlfm)
读FM高电平脉宽(trdhfm)
写控制低电平脉宽(twrl)
写控制高电平脉宽(twrh)

注意:ID指LCD的ID号
FM指帧缓存,frame memory,即:GRAM

驱动流程

stm32 fsmc,嵌入式开发,stm32,单片机,arm

指令说明

RGB565格式

模块对外接口采用16位并口,颜色深度为16位,格式为RGB565,关系如下图:
stm32 fsmc,嵌入式开发,stm32,单片机,arm

ILI9341指令

ILI9341所有的指令都是8位的(高8位无效),且参数除了读写GRAM的时候是16位,其他操作参数,都是8位的。

ILI9341的指令很多,这里不一一介绍,仅介绍几个重要的指令,他们是:0XD3,0X36,0X2A,0X2B,0X2C,0X2E等6条指令。

0XD3指令

该指令为读ID4指令,用于读取LCD控制器的ID 。因此,同一个代码,可以根据ID的不同,执行不同的LCD驱动初始化,以兼容不同的LCD屏幕。
stm32 fsmc,嵌入式开发,stm32,单片机,arm

0X36指令

该指令为存储访问控制指令,可以控制ILI9341存储器的读写方向,简单的说,就是在连续写GRAM的时候,可以控制GRAM指针的增长方向,从而控制显示方式(读GRAM也是一样)。
stm32 fsmc,嵌入式开发,stm32,单片机,arm
stm32 fsmc,嵌入式开发,stm32,单片机,arm
stm32 fsmc,嵌入式开发,stm32,单片机,arm

0X2A指令

该指令是列地址设置指令,在从左到右,从上到下的扫描方式(默认)下面,该指令用于设置横坐标(x坐标)
stm32 fsmc,嵌入式开发,stm32,单片机,arm
在默认扫描方式时,该指令用于设置x坐标,该指令带有4个参数,实际上是2个坐标值:SC和EC,即列地址的起始值和结束值,SC必须小于等于EC,且0≤SC/EC≤239。一般在设置x坐标的时候,我们只需要带2个参数即可,也就是设置SC即可,因为如果EC没有变化,我们只需要设置一次即可(在初始化ILI9341的时候设置),从而提高速度。

0X2B指令

该指令是页地址设置指令,在从左到右,从上到下的扫描方式(默认)下面,该指令用于设置纵坐标(y坐标)
stm32 fsmc,嵌入式开发,stm32,单片机,arm
在默认扫描方式时,该指令用于设置y坐标,该指令带有4个参数,实际上是2个坐标值:SP和EP,即页地址的起始值和结束值,SP必须小于等于EP,且0≤SP/EP≤319。一般在设置y坐标的时候,我们只需要带2个参数即可,也就是设置SP即可,因为如果EP没有变化,我们只需要设置一次即可(在初始化ILI9341的时候设置),从而提高速度。

0X2C指令

该指令是写GRAM指令,在发送该指令之后,我们便可以往LCD的GRAM里面写入颜色数据了,该指令支持连续写 (地址自动递增)
stm32 fsmc,嵌入式开发,stm32,单片机,arm
在收到指令0X2C之后,数据有效位宽变为16位,我们可以连续写入LCD GRAM值,而GRAM的地址将根据MY/MX/MV设置的扫描方向进行自增。
例如:假设设置的是从左到右,从上到下的扫描方式,那么设置好起始坐标(通过SC,SP设置)后,每写入一个颜色值,GRAM地址将会自动自增1(SC++),如果碰到EC,则回到SC,同时SP++,一直到坐标:EC,EP结束,其间无需再次设置的坐标,从而大大提高写入速度。

0X2E指令

该指令是读GRAM指令,用于读取ILI9341的显存(GRAM),同0X2C指令,该指令支持连续读 (地址自动递增)
stm32 fsmc,嵌入式开发,stm32,单片机,arm
ILI9341在收到该指令后,第一次输出的是dummy数据(无效),第二次开始,读取到的才是有效的GRAM数据(从坐标:SC,SP开始),输出规律为:每个颜色分量占8个位,一次输出2个颜色分量。比如:第一次输出是R1G1,随后的规律为:B1R2G2B2R3G3B3R4G4B4R5G5… 以此类推

F407模式A读写时序与103略有不同

中文手册1203
stm32 fsmc,嵌入式开发,stm32,单片机,arm
stm32 fsmc,嵌入式开发,stm32,单片机,arm

TFTLCD引脚

NBL用不到
A[25-0]用一个
NEx片选
NOE读,NWE写
D数据
根据驱动时序时间设计ADDSET与DATASET

TFTLCD 显示

需要的相关设置步骤如下:

初始化 FSMC

主要是初始化三个寄存器 FSMC_BCRx,FSMC_BTRx,FSMC_BWTRx。
固件库提供了 3 个 FSMC 初始化函数分别为

FSMC_NORSRAMInit()FSMC_NANDInit()FSMC_PCCARDInit()
  • 设置 STM32F4 与 与 TFTLCD 模块相连接的 IO 。
  • 初始化 TFTLCD 模块
    • 探索者 STM32F4 开发板的LCD 接口,将 TFTLCD 的 RST 同 STM32F4 的 RESET 连接在一起了,只要按下开发板的 RESET键,就会对 LCD 进行硬复位。
    • 初始化序列,就是向 LCD 控制器写入一系列的设置值(比如伽马校准),这些初始化序列一般 LCD 供应商会提供给客户,我们直接使用这些序列即可,不需要深入研究。
  • 通过函数将字符和数字显示到 TFTLCD 模块上
    • 设置坐标→写 GRAM 指令→写 GRAM 来实现,但是这个步骤,只是一个点的处理,我们要显示字符/数字,就必须要多次使用这个步骤,从而达到显示字符/数字的目的,所以需要设计一个函数来实现数字/字符的显示,之后调用该函数,就可以实现数字/字符的显示了。

LCD结构体

定义如下 LCD 操作结构体(在 lcd.h 里面定义):

//LCD 操作结构体
typedef struct
{
vu16 LCD_REG;
vu16 LCD_RAM;
} LCD_TypeDef;
//使用 NOR/SRAM 的 Bank1.sector4,地址位 HADDR[27,26]=11 A6 作为数据命令区分线
//注意 16 位数据总线时,STM32 内部地址会右移一位对齐!
#define LCD_BASE ((u32)(0x6C000000 | 0x0000007E))
#define LCD ((LCD_TypeDef *) LCD_BASE)

有了这个定义,当我们要往 LCD 写命令/数据的时候,可以这样写:

LCD->LCD_REG=CMD; //写命令
LCD->LCD_RAM=DATA; //写数据

而读的时候反过来操作就可以了,如下所示:

CMD= LCD->LCD_REG;//读 LCD 寄存器
DATA = LCD->LCD_RAM;//读 LCD 数据

这其中,CS、WR、RD 和 IO 口方向都是由 FSMC 控制,不需要我们手动设置了。

LCD重要参数

介绍一下 lcd.h 里面的另一个重要结构体:

//LCD 重要参数集
typedef struct
{
u16 width; //LCD 宽度
u16 height; //LCD 高度
u16 id; //LCD ID
u8 dir; //横屏还是竖屏控制:0,竖屏;1,横屏。
u16 wramcmd; //开始写 gram 指令
u16 setxcmd; //设置 x 坐标指令
u16 setycmd; //设置 y 坐标指令
}_lcd_dev;
//LCD 参数
extern _lcd_dev lcddev; //管理 LCD 重要参数

该结构体用于保存一些 LCD 重要参数信息
这个结构体虽然占用了十几个字节的内存,但是却可以让我们的驱动函数支持不同尺寸的 LCD,同时可以实现 LCD 横竖屏切换等重要功能,所以还是利大于弊的。

几个重要函数

写寄存器命令

//写寄存器函数
//regval:寄存器值
void LCD_WR_REG(vu16 regval)
{ regval=regval; //使用-O2 优化的时候,必须插入的延时
LCD->LCD_REG=regval;//写入要写的寄存器序号
}

写LCD数据

//写 LCD 数据
//data:要写入的值
void LCD_WR_DATA(vu16 data)
{ data=data; //使用-O2 优化的时候,必须插入的延时
LCD->LCD_RAM=data;
}

读LCD数据

//读 LCD 数据
//返回值:读到的值
u16 LCD_RD_DATA(void)
{ vu16 ram; //防止被优化
ram=LCD->LCD_RAM;
return ram;
}

写寄存器

//写寄存器
//LCD_Reg:寄存器地址
//LCD_RegValue:要写入的数据
void LCD_WriteReg(vu16 LCD_Reg, vu16 LCD_RegValue)
{ LCD->LCD_REG = LCD_Reg; //写入要写的寄存器序号
LCD->LCD_RAM = LCD_RegValue; //写入数据
}

读寄存器

//读寄存器
//LCD_Reg:寄存器地址
//返回值:读到的数据
u16 LCD_ReadReg(vu16 LCD_Reg)
{ LCD_WR_REG(LCD_Reg); //写入要读的寄存器序号
delay_us(5);
return LCD_RD_DATA(); //返回读到的值
}

写GRAM

//开始写 GRAM
void LCD_WriteRAM_Prepare(void)
{ LCD->LCD_REG=lcddev.wramcmd;
}

//LCD 写 GRAM
//RGB_Code:颜色值
void LCD_WriteRAM(u16 RGB_Code)
{ LCD->LCD_RAM = RGB_Code;//写十六位 GRAM
}

坐标设置函数

该函数代码如下:

//设置光标位置
//Xpos:横坐标
//Ypos:纵坐标
void LCD_SetCursor(u16 Xpos, u16 Ypos)
{
if(lcddev.id==0X9341||lcddev.id==0X5310)
{
LCD_WR_REG(lcddev.setxcmd);
LCD_WR_DATA(Xpos>>8);
LCD_WR_DATA(Xpos&0XFF);
LCD_WR_REG(lcddev.setycmd);
LCD_WR_DATA(Ypos>>8);
LCD_WR_DATA(Ypos&0XFF);
}else if(lcddev.id==0X6804)
{
if(lcddev.dir==1)Xpos=lcddev.width-1-Xpos;//横屏时处理
LCD_WR_REG(lcddev.setxcmd);
LCD_WR_DATA(Xpos>>8);
LCD_WR_DATA(Xpos&0XFF);
LCD_WR_REG(lcddev.setycmd);
LCD_WR_DATA(Ypos>>8);
LCD_WR_DATA(Ypos&0XFF);
}else if(lcddev.id==0X5510)
{
LCD_WR_REG(lcddev.setxcmd);
LCD_WR_DATA(Xpos>>8);
LCD_WR_REG(lcddev.setxcmd+1);
LCD_WR_DATA(Xpos&0XFF);
LCD_WR_REG(lcddev.setycmd);
LCD_WR_DATA(Ypos>>8);
LCD_WR_REG(lcddev.setycmd+1);
LCD_WR_DATA(Ypos&0XFF);
}else
{
if(lcddev.dir==1)Xpos=lcddev.width-1-Xpos;//横屏其实就是调转 x,y 坐标
LCD_WriteReg(lcddev.setxcmd, Xpos);
LCD_WriteReg(lcddev.setycmd, Ypos);
}
}

该函数实现将 LCD 的当前操作点设置到指定坐标(x,y)。因为 9341/5310/6804/5510 等的设置同其他屏有些不太一样,所以进行了区别对待。

画点函数

//画点
//x,y:坐标
//POINT_COLOR:此点的颜色
void LCD_DrawPoint(u16 x,u16 y)
{
LCD_SetCursor(x,y); //设置光标位置
LCD_WriteRAM_Prepare(); //开始写入 GRAM
LCD->LCD_RAM=POINT_COLOR;
}

该函数实现比较简单,就是先设置坐标,然后往坐标写颜色。其中 POINT_COLOR 是我们定义的一个全局变量,用于存放画笔颜色,顺带介绍一下另外一个全局变量:BACK_COLOR,该变量代表 LCD 的背景色。LCD_DrawPoint 函数虽然简单,但是至关重要,其他几乎所有上层函数,都是通过调用这个函数实现的。文章来源地址https://www.toymoban.com/news/detail-781657.html

TFTLCD 模块的初始化函数 LCD_Init


//初始化lcd
//该初始化函数可以初始化各种ILI93XX液晶,但是其他函数是基于ILI9320的!!!
//在其他型号的驱动芯片上没有测试! 
void LCD_Init(void)
{ 	
	vu32 i=0;
	
  GPIO_InitTypeDef  GPIO_InitStructure;
	FSMC_NORSRAMInitTypeDef  FSMC_NORSRAMInitStructure;
  FSMC_NORSRAMTimingInitTypeDef  readWriteTiming; 
	FSMC_NORSRAMTimingInitTypeDef  writeTiming;
	
	RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOB|RCC_AHB1Periph_GPIOD|RCC_AHB1Periph_GPIOE|RCC_AHB1Periph_GPIOF|RCC_AHB1Periph_GPIOG, ENABLE);//使能PD,PE,PF,PG时钟  
  RCC_AHB3PeriphClockCmd(RCC_AHB3Periph_FSMC,ENABLE);//使能FSMC时钟  
	
 
	GPIO_InitStructure.GPIO_Pin = GPIO_Pin_15;//PB15 推挽输出,控制背光
  GPIO_InitStructure.GPIO_Mode = GPIO_Mode_OUT;//普通输出模式
  GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;//推挽输出
  GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;//100MHz
  GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP;//上拉
  GPIO_Init(GPIOB, &GPIO_InitStructure);//初始化 //PB15 推挽输出,控制背光
	
  GPIO_InitStructure.GPIO_Pin = (3<<0)|(3<<4)|(7<<8)|(3<<14);//PD0,1,4,5,8,9,10,14,15 AF OUT
  GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF;//复用输出
  GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;//推挽输出
  GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz;//100MHz
  GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP;//上拉
  GPIO_Init(GPIOD, &GPIO_InitStructure);//初始化  
	
  GPIO_InitStructure.GPIO_Pin = (0X1FF<<7);//PE7~15,AF OUT
  GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF;//复用输出
  GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;//推挽输出
  GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz;//100MHz
  GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP;//上拉
  GPIO_Init(GPIOE, &GPIO_InitStructure);//初始化  

	GPIO_InitStructure.GPIO_Pin = GPIO_Pin_12;//PF12,FSMC_A6
  GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF;//复用输出
  GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;//推挽输出
  GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz;//100MHz
  GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP;//上拉
  GPIO_Init(GPIOF, &GPIO_InitStructure);//初始化  

	GPIO_InitStructure.GPIO_Pin = GPIO_Pin_12;//PF12,FSMC_A6
  GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF;//复用输出
  GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;//推挽输出
  GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz;//100MHz
  GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP;//上拉
  GPIO_Init(GPIOG, &GPIO_InitStructure);//初始化 

  GPIO_PinAFConfig(GPIOD,GPIO_PinSource0,GPIO_AF_FSMC);//PD0,AF12
  GPIO_PinAFConfig(GPIOD,GPIO_PinSource1,GPIO_AF_FSMC);//PD1,AF12
  GPIO_PinAFConfig(GPIOD,GPIO_PinSource4,GPIO_AF_FSMC);
  GPIO_PinAFConfig(GPIOD,GPIO_PinSource5,GPIO_AF_FSMC); 
  GPIO_PinAFConfig(GPIOD,GPIO_PinSource8,GPIO_AF_FSMC); 
  GPIO_PinAFConfig(GPIOD,GPIO_PinSource9,GPIO_AF_FSMC);
  GPIO_PinAFConfig(GPIOD,GPIO_PinSource10,GPIO_AF_FSMC);
  GPIO_PinAFConfig(GPIOD,GPIO_PinSource14,GPIO_AF_FSMC);
  GPIO_PinAFConfig(GPIOD,GPIO_PinSource15,GPIO_AF_FSMC);//PD15,AF12
 
  GPIO_PinAFConfig(GPIOE,GPIO_PinSource7,GPIO_AF_FSMC);//PE7,AF12
  GPIO_PinAFConfig(GPIOE,GPIO_PinSource8,GPIO_AF_FSMC);
  GPIO_PinAFConfig(GPIOE,GPIO_PinSource9,GPIO_AF_FSMC);
  GPIO_PinAFConfig(GPIOE,GPIO_PinSource10,GPIO_AF_FSMC);
  GPIO_PinAFConfig(GPIOE,GPIO_PinSource11,GPIO_AF_FSMC);
  GPIO_PinAFConfig(GPIOE,GPIO_PinSource12,GPIO_AF_FSMC);
  GPIO_PinAFConfig(GPIOE,GPIO_PinSource13,GPIO_AF_FSMC);
  GPIO_PinAFConfig(GPIOE,GPIO_PinSource14,GPIO_AF_FSMC);
  GPIO_PinAFConfig(GPIOE,GPIO_PinSource15,GPIO_AF_FSMC);//PE15,AF12
 
  GPIO_PinAFConfig(GPIOF,GPIO_PinSource12,GPIO_AF_FSMC);//PF12,AF12
  GPIO_PinAFConfig(GPIOG,GPIO_PinSource12,GPIO_AF_FSMC);


  readWriteTiming.FSMC_AddressSetupTime = 0XF;	 //地址建立时间(ADDSET)为16个HCLK 1/168M=6ns*16=96ns	
  readWriteTiming.FSMC_AddressHoldTime = 0x00;	 //地址保持时间(ADDHLD)模式A未用到	
  readWriteTiming.FSMC_DataSetupTime = 60;			//数据保存时间为60个HCLK	=6*60=360ns
  readWriteTiming.FSMC_BusTurnAroundDuration = 0x00;
  readWriteTiming.FSMC_CLKDivision = 0x00;
  readWriteTiming.FSMC_DataLatency = 0x00;
  readWriteTiming.FSMC_AccessMode = FSMC_AccessMode_A;	 //模式A 
    

	writeTiming.FSMC_AddressSetupTime =9;	      //地址建立时间(ADDSET)为9个HCLK =54ns 
  writeTiming.FSMC_AddressHoldTime = 0x00;	 //地址保持时间(A		
  writeTiming.FSMC_DataSetupTime = 8;		 //数据保存时间为6ns*9个HCLK=54ns
  writeTiming.FSMC_BusTurnAroundDuration = 0x00;
  writeTiming.FSMC_CLKDivision = 0x00;
  writeTiming.FSMC_DataLatency = 0x00;
  writeTiming.FSMC_AccessMode = FSMC_AccessMode_A;	 //模式A 

 
  FSMC_NORSRAMInitStructure.FSMC_Bank = FSMC_Bank1_NORSRAM4;//  这里我们使用NE4 ,也就对应BTCR[6],[7]。
  FSMC_NORSRAMInitStructure.FSMC_DataAddressMux = FSMC_DataAddressMux_Disable; // 不复用数据地址
  FSMC_NORSRAMInitStructure.FSMC_MemoryType =FSMC_MemoryType_SRAM;// FSMC_MemoryType_SRAM;  //SRAM   
  FSMC_NORSRAMInitStructure.FSMC_MemoryDataWidth = FSMC_MemoryDataWidth_16b;//存储器数据宽度为16bit   
  FSMC_NORSRAMInitStructure.FSMC_BurstAccessMode =FSMC_BurstAccessMode_Disable;// FSMC_BurstAccessMode_Disable; 
  FSMC_NORSRAMInitStructure.FSMC_WaitSignalPolarity = FSMC_WaitSignalPolarity_Low;
	FSMC_NORSRAMInitStructure.FSMC_AsynchronousWait=FSMC_AsynchronousWait_Disable; 
  FSMC_NORSRAMInitStructure.FSMC_WrapMode = FSMC_WrapMode_Disable;   
  FSMC_NORSRAMInitStructure.FSMC_WaitSignalActive = FSMC_WaitSignalActive_BeforeWaitState;  
  FSMC_NORSRAMInitStructure.FSMC_WriteOperation = FSMC_WriteOperation_Enable;	//  存储器写使能
  FSMC_NORSRAMInitStructure.FSMC_WaitSignal = FSMC_WaitSignal_Disable;   
  FSMC_NORSRAMInitStructure.FSMC_ExtendedMode = FSMC_ExtendedMode_Enable; // 读写使用不同的时序
  FSMC_NORSRAMInitStructure.FSMC_WriteBurst = FSMC_WriteBurst_Disable; 
  FSMC_NORSRAMInitStructure.FSMC_ReadWriteTimingStruct = &readWriteTiming; //读写时序
  FSMC_NORSRAMInitStructure.FSMC_WriteTimingStruct = &writeTiming;  //写时序

  FSMC_NORSRAMInit(&FSMC_NORSRAMInitStructure);  //初始化FSMC配置

  FSMC_NORSRAMCmd(FSMC_Bank1_NORSRAM4, ENABLE);  // 使能BANK1 
		
 	delay_ms(50); // delay 50 ms 
 	LCD_WriteReg(0x0000,0x0001);
	delay_ms(50); // delay 50 ms 
  	lcddev.id = LCD_ReadReg(0x0000);   
   	if(lcddev.id<0XFF||lcddev.id==0XFFFF||lcddev.id==0X9300)//读到ID不正确,新增lcddev.id==0X9300判断,因为9341在未被复位的情况下会被读成9300
	{	
 		//尝试9341 ID的读取		
		LCD_WR_REG(0XD3);				   
		lcddev.id=LCD_RD_DATA();	//dummy read 	
 		lcddev.id=LCD_RD_DATA();	//读到0X00
  		lcddev.id=LCD_RD_DATA();   	//读取93								   
 		lcddev.id<<=8;
		lcddev.id|=LCD_RD_DATA();  	//读取41 	   			   
 		if(lcddev.id!=0X9341)		//非9341,尝试是不是6804
		{	
 			LCD_WR_REG(0XBF);				   
			lcddev.id=LCD_RD_DATA(); 	//dummy read 	 
	 		lcddev.id=LCD_RD_DATA();   	//读回0X01			   
	 		lcddev.id=LCD_RD_DATA(); 	//读回0XD0 			  	
	  		lcddev.id=LCD_RD_DATA();	//这里读回0X68 
			lcddev.id<<=8;
	  		lcddev.id|=LCD_RD_DATA();	//这里读回0X04	  
			if(lcddev.id!=0X6804)		//也不是6804,尝试看看是不是NT35310
			{ 
				LCD_WR_REG(0XD4);				   
				lcddev.id=LCD_RD_DATA();//dummy read  
				lcddev.id=LCD_RD_DATA();//读回0X01	 
				lcddev.id=LCD_RD_DATA();//读回0X53	
				lcddev.id<<=8;	 
				lcddev.id|=LCD_RD_DATA();	//这里读回0X10	 
				if(lcddev.id!=0X5310)		//也不是NT35310,尝试看看是不是NT35510
				{
					LCD_WR_REG(0XDA00);	
					lcddev.id=LCD_RD_DATA();		//读回0X00	 
					LCD_WR_REG(0XDB00);	
					lcddev.id=LCD_RD_DATA();		//读回0X80
					lcddev.id<<=8;	
					LCD_WR_REG(0XDC00);	
					lcddev.id|=LCD_RD_DATA();		//读回0X00		
					if(lcddev.id==0x8000)lcddev.id=0x5510;//NT35510读回的ID是8000H,为方便区分,我们强制设置为5510
					if(lcddev.id!=0X5510)			//也不是NT5510,尝试看看是不是SSD1963
					{
						LCD_WR_REG(0XA1);
						lcddev.id=LCD_RD_DATA();
						lcddev.id=LCD_RD_DATA();	//读回0X57
						lcddev.id<<=8;	 
						lcddev.id|=LCD_RD_DATA();	//读回0X61	
						if(lcddev.id==0X5761)lcddev.id=0X1963;//SSD1963读回的ID是5761H,为方便区分,我们强制设置为1963
					}
				}
			}
 		}  	
	} 
	if(lcddev.id==0X9341||lcddev.id==0X5310||lcddev.id==0X5510||lcddev.id==0X1963)//如果是这几个IC,则设置WR时序为最快
	{
		//重新配置写时序控制寄存器的时序   	 							    
		FSMC_Bank1E->BWTR[6]&=~(0XF<<0);//地址建立时间(ADDSET)清零 	 
		FSMC_Bank1E->BWTR[6]&=~(0XF<<8);//数据保存时间清零
		FSMC_Bank1E->BWTR[6]|=3<<0;		//地址建立时间(ADDSET)为3个HCLK =18ns  	 
		FSMC_Bank1E->BWTR[6]|=2<<8; 	//数据保存时间(DATAST)为6ns*3个HCLK=18ns
	}else if(lcddev.id==0X6804||lcddev.id==0XC505)	//6804/C505速度上不去,得降低
	{
		//重新配置写时序控制寄存器的时序   	 							    
		FSMC_Bank1E->BWTR[6]&=~(0XF<<0);//地址建立时间(ADDSET)清零 	 
		FSMC_Bank1E->BWTR[6]&=~(0XF<<8);//数据保存时间清零
		FSMC_Bank1E->BWTR[6]|=10<<0;	//地址建立时间(ADDSET)为10个HCLK =60ns  	 
		FSMC_Bank1E->BWTR[6]|=12<<8; 	//数据保存时间(DATAST)为6ns*13个HCLK=78ns
	}
 	printf(" LCD ID:%x\r\n",lcddev.id); //打印LCD ID   
	if(lcddev.id==0X9341)	//9341初始化
	{	 
		LCD_WR_REG(0xCF);  
		LCD_WR_DATA(0x00); 
		LCD_WR_DATA(0xC1); 
		LCD_WR_DATA(0X30); 
		LCD_WR_REG(0xED);  
		LCD_WR_DATA(0x64); 
		LCD_WR_DATA(0x03); 
		LCD_WR_DATA(0X12); 
		LCD_WR_DATA(0X81); 
		LCD_WR_REG(0xE8);  
		LCD_WR_DATA(0x85); 
		LCD_WR_DATA(0x10); 
		LCD_WR_DATA(0x7A); 
		LCD_WR_REG(0xCB);  
		LCD_WR_DATA(0x39); 
		LCD_WR_DATA(0x2C); 
		LCD_WR_DATA(0x00); 
		LCD_WR_DATA(0x34); 
		LCD_WR_DATA(0x02); 
		LCD_WR_REG(0xF7);  
		LCD_WR_DATA(0x20); 
		LCD_WR_REG(0xEA);  
		LCD_WR_DATA(0x00); 
		LCD_WR_DATA(0x00); 
		LCD_WR_REG(0xC0);    //Power control 
		LCD_WR_DATA(0x1B);   //VRH[5:0] 
		LCD_WR_REG(0xC1);    //Power control 
		LCD_WR_DATA(0x01);   //SAP[2:0];BT[3:0] 
		LCD_WR_REG(0xC5);    //VCM control 
		LCD_WR_DATA(0x30); 	 //3F
		LCD_WR_DATA(0x30); 	 //3C
		LCD_WR_REG(0xC7);    //VCM control2 
		LCD_WR_DATA(0XB7); 
		LCD_WR_REG(0x36);    // Memory Access Control 
		LCD_WR_DATA(0x48); 
		LCD_WR_REG(0x3A);   
		LCD_WR_DATA(0x55); 
		LCD_WR_REG(0xB1);   
		LCD_WR_DATA(0x00);   
		LCD_WR_DATA(0x1A); 
		LCD_WR_REG(0xB6);    // Display Function Control 
		LCD_WR_DATA(0x0A); 
		LCD_WR_DATA(0xA2); 
		LCD_WR_REG(0xF2);    // 3Gamma Function Disable 
		LCD_WR_DATA(0x00); 
		LCD_WR_REG(0x26);    //Gamma curve selected 
		LCD_WR_DATA(0x01); 
		LCD_WR_REG(0xE0);    //Set Gamma 
		LCD_WR_DATA(0x0F); 
		LCD_WR_DATA(0x2A); 
		LCD_WR_DATA(0x28); 
		LCD_WR_DATA(0x08); 
		LCD_WR_DATA(0x0E); 
		LCD_WR_DATA(0x08); 
		LCD_WR_DATA(0x54); 
		LCD_WR_DATA(0XA9); 
		LCD_WR_DATA(0x43); 
		LCD_WR_DATA(0x0A); 
		LCD_WR_DATA(0x0F); 
		LCD_WR_DATA(0x00); 
		LCD_WR_DATA(0x00); 
		LCD_WR_DATA(0x00); 
		LCD_WR_DATA(0x00); 		 
		LCD_WR_REG(0XE1);    //Set Gamma 
		LCD_WR_DATA(0x00); 
		LCD_WR_DATA(0x15); 
		LCD_WR_DATA(0x17); 
		LCD_WR_DATA(0x07); 
		LCD_WR_DATA(0x11); 
		LCD_WR_DATA(0x06); 
		LCD_WR_DATA(0x2B); 
		LCD_WR_DATA(0x56); 
		LCD_WR_DATA(0x3C); 
		LCD_WR_DATA(0x05); 
		LCD_WR_DATA(0x10); 
		LCD_WR_DATA(0x0F); 
		LCD_WR_DATA(0x3F); 
		LCD_WR_DATA(0x3F); 
		LCD_WR_DATA(0x0F); 
		LCD_WR_REG(0x2B); 
		LCD_WR_DATA(0x00);
		LCD_WR_DATA(0x00);
		LCD_WR_DATA(0x01);
		LCD_WR_DATA(0x3f);
		LCD_WR_REG(0x2A); 
		LCD_WR_DATA(0x00);
		LCD_WR_DATA(0x00);
		LCD_WR_DATA(0x00);
		LCD_WR_DATA(0xef);	 
		LCD_WR_REG(0x11); //Exit Sleep
		delay_ms(120);
		LCD_WR_REG(0x29); //display on	
	}
		 
	LCD_Display_Dir(0);		//默认为竖屏
	LCD_LED=1;				//点亮背光
	LCD_Clear(WHITE);
}

主函数代码

int main(void)
{ 
 	u8 x=0;
	u8 lcd_id[12];				//存放LCD ID字符串
	NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2);//设置系统中断优先级分组2
	delay_init(168);      //初始化延时函数
	uart_init(115200);		//初始化串口波特率为115200
	
	LED_Init();					  //初始化LED
 	LCD_Init();           //初始化LCD FSMC接口
	POINT_COLOR=BLACK;      //画笔颜色:红色
	sprintf((char*)lcd_id,"LCD ID:%04X",lcddev.id);//将LCD ID打印到lcd_id数组。				 	
  	while(1) 
	{		 
		switch(x)
		{
			case 0:LCD_Clear(WHITE);break;
			case 1:LCD_Clear(BLACK);break;
			case 2:LCD_Clear(BLUE);break;
			case 3:LCD_Clear(RED);break;
			case 4:LCD_Clear(MAGENTA);break;
			case 5:LCD_Clear(GREEN);break;
			case 6:LCD_Clear(CYAN);break; 
			case 7:LCD_Clear(YELLOW);break;
			case 8:LCD_Clear(BRRED);break;
			case 9:LCD_Clear(GRAY);break;
			case 10:LCD_Clear(LGRAY);break;
			case 11:LCD_Clear(BROWN);break;
		}
		POINT_COLOR=RED;	  
		LCD_ShowString(30,40,210,16,24,"Explorer STM32F4");	
		LCD_ShowString(30,70,200,16,16,"we will be happiness");
		LCD_ShowString(30,90,200,16,16,"it is ok");
 		LCD_ShowString(30,110,200,16,16,lcd_id);		//显示LCD ID	      					 
		LCD_ShowString(30,130,200,12,12,"2014/5/4");	      					 
	  x++;
		if(x==12)x=0;
		LED0=!LED0;	 
		delay_ms(1000);	
	} 
}

SRAM

到了这里,关于STM32的FSMC的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • stm32毕设分享 stm32智能运动计步系统 - 物联网 嵌入式 单片机

    🔥 这两年开始毕业设计和毕业答辩的要求和难度不断提升,传统的毕设题目缺少创新和亮点,往往达不到毕业答辩的要求,这两年不断有学弟学妹告诉学长自己做的项目系统达不到老师的要求。 为了大家能够顺利以及最少的精力通过毕设,学长分享优质毕业设计项目,今天

    2024年02月20日
    浏览(70)
  • 嵌入式项目分享 stm32机器视觉的口罩佩戴检测系统 - 单片机 物联网 嵌入式

    🔥 这两年开始毕业设计和毕业答辩的要求和难度不断提升,传统的毕设题目缺少创新和亮点,往往达不到毕业答辩的要求,这两年不断有学弟学妹告诉学长自己做的项目系统达不到老师的要求。 为了大家能够顺利以及最少的精力通过毕设,学长分享优质毕业设计项目,今天

    2024年02月20日
    浏览(132)
  • 嵌入式STM32 单片机 GPIO 的工作原理详解

    STM32的 GPIO 介绍 GPIO 是通用输入/输出端口的简称,是 STM32 可控制的引脚。GPIO 的引脚与外部硬件设备连接,可实现与外部通讯、控制外部硬件或者采集外部硬件数据的功能。 以 STM32F103ZET6 芯片为例子,该芯片共有 144 脚芯片,包括7个通用目的的输入/输出口(GPIO)组,分别为

    2024年02月20日
    浏览(48)
  • stm32毕设分享 stm32单片机的远程WIFI密码锁 - 物联网 嵌入式

    🔥 这两年开始毕业设计和毕业答辩的要求和难度不断提升,传统的毕设题目缺少创新和亮点,往往达不到毕业答辩的要求,这两年不断有学弟学妹告诉学长自己做的项目系统达不到老师的要求。 为了大家能够顺利以及最少的精力通过毕设,学长分享优质毕业设计项目,今天

    2024年02月20日
    浏览(54)
  • stm32毕设分享 基于stm32的便携用电功率统计系统 -物联网 嵌入式 单片机

    🔥 这两年开始毕业设计和毕业答辩的要求和难度不断提升,传统的毕设题目缺少创新和亮点,往往达不到毕业答辩的要求,这两年不断有学弟学妹告诉学长自己做的项目系统达不到老师的要求。 为了大家能够顺利以及最少的精力通过毕设,学长分享优质毕业设计项目,今天

    2024年02月22日
    浏览(58)
  • 嵌入式毕设分享 基于单片机的风速测量系统 - 物联网 嵌入式 stm32 arduino

    🔥 这两年开始毕业设计和毕业答辩的要求和难度不断提升,传统的毕设题目缺少创新和亮点,往往达不到毕业答辩的要求,这两年不断有学弟学妹告诉学长自己做的项目系统达不到老师的要求。 为了大家能够顺利以及最少的精力通过毕设,学长分享优质毕业设计项目,今天

    2024年02月20日
    浏览(64)
  • 嵌入式毕设分享 基于单片机的智能音响设计与实现 -物联网 嵌入式 stm32

    🔥 这两年开始毕业设计和毕业答辩的要求和难度不断提升,传统的毕设题目缺少创新和亮点,往往达不到毕业答辩的要求,这两年不断有学弟学妹告诉学长自己做的项目系统达不到老师的要求。 为了大家能够顺利以及最少的精力通过毕设,学长分享优质毕业设计项目,今天

    2024年02月22日
    浏览(58)
  • stm32毕设分享 单片机自动写字机器人设计与实现 - 物联网 嵌入式 stm32

    🔥 这两年开始毕业设计和毕业答辩的要求和难度不断提升,传统的毕设题目缺少创新和亮点,往往达不到毕业答辩的要求,这两年不断有学弟学妹告诉学长自己做的项目系统达不到老师的要求。 为了大家能够顺利以及最少的精力通过毕设,学长分享优质毕业设计项目,今天

    2024年01月21日
    浏览(81)
  • stm32毕设分享 stm32单片机酒精浓度酒驾检测系统 - 物联网 嵌入式

    🔥 这两年开始毕业设计和毕业答辩的要求和难度不断提升,传统的毕设题目缺少创新和亮点,往往达不到毕业答辩的要求,这两年不断有学弟学妹告诉学长自己做的项目系统达不到老师的要求。 为了大家能够顺利以及最少的精力通过毕设,学长分享优质毕业设计项目,今天

    2024年02月20日
    浏览(66)
  • 嵌入式项目分享 单片机家用燃气的可视化实时监控报警仪 - 物联网 嵌入式 stm32

    🔥 这两年开始毕业设计和毕业答辩的要求和难度不断提升,传统的毕设题目缺少创新和亮点,往往达不到毕业答辩的要求,这两年不断有学弟学妹告诉学长自己做的项目系统达不到老师的要求。 为了大家能够顺利以及最少的精力通过毕设,学长分享优质毕业设计项目,今天

    2024年02月22日
    浏览(55)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包