生成模型—VAE

这篇具有很好参考价值的文章主要介绍了生成模型—VAE。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

生成模型—VAE(Variational Auto-Encoder)

为进一步了解面部反应生成模型的原理,故详细学习VAE。

Auto-encoder

感谢李宏毅老师的视频!

自编码器是一种无监督学习的神经网络模型,可以用于数据降维、特征压缩、特征提取、数据生成等任务。其主要思想是尝试将输入数据通过编码器(Encoder)转换为一个低维度的潜在特征空间(类似PCA),并使用解码器(Decoder)将该特征空间重建为与原始数据尽可能相似的输出数据。自编码器由编码器和解码器两部分组成,其中编码器将高维度的输入数据映射到低维度的潜在特征空间,而解码器则将该潜在特征空间的表示映射回原来的高维度数据空间,以进行重构或预测任务。

自编码器可以用于无监督特征学习、数据降维、去噪、图像重建等多个领域。其中,通过限制编码和解码过程中的某些约束(如稀疏性、降噪、受限玻尔兹曼机等),可以进一步优化自编码器的表现,增强其鲁棒性和泛化性能。

生成模型—VAE

自编码器其实是Reconstruction的过程,也就是输入的vector/embedding/representing/code和输出的vector/embedding/representing/code as close as possible.

变体 Denoising Auto-encoder

生成模型—VAE
以及BERT也可以视为一种Denoising Auto-encoder
生成模型—VAE

Discrete Latent Representation

中间Encoder的输出也称作Latent Representation

生成模型—VAE

原先是一个浮点数值的向量,可以让其二值化或者one-hot来得到新的向量,这一步应该是量化 (Quantization),从FP32转换为FP16或者INT8。

生成模型—VAE

Variational Auto-Encoder

首先关于变分推理,具体的贝叶斯公式推导可见文章或视频(评论区笔记)

VAE的讲解视频P1,可从35:17开始观看,收益很大

生成模型—VAE

简单来说,AE只会生成一个固定的Z码,但是因为训练数据的限制,实际不能很好拟合现实情况,所以引入VAE,它生成的是Z的概率分布然后采样出Z'送入Decoder

VQ-VAE

生成模型—VAE
生成模型—VAE

同时我还参考了以下文章来更加了解VAE,若想了解更多生成模型可阅读文章文章来源地址https://www.toymoban.com/news/detail-781720.html

到了这里,关于生成模型—VAE的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Variational Autoencoders(VAE)

    在过去的几年中,基于深度学习的生成模型越来越受到关注,一方面这是因为该领域产生了一些惊人改进,另一方面受到关注也暗示着该领域进展迅猛。 依靠大量数据,精心设计的网络体系结构和智能培训技术,深入的生成模型已经显示出了令人难以置信的能力,可以生成各

    2024年02月08日
    浏览(33)
  • 变分自编码器(Variational AutoEncoder,VAE)

    说到编码器这块,不可避免地要讲起 AE (AutoEncoder)自编码器。它的结构下图所示: 据图可知,AE通过自监督的训练方式,能够将输入的原始特征通过编码encoder后得到潜在的特征编码,实现了自动化的特征工程,并且达到了降维和泛化的目的。而后通过对进行decoder后,我们

    2024年01月18日
    浏览(33)
  • AIGC实战——变分自编码器(Variational Autoencoder, VAE)

    我们已经学习了如何实现自编码器,并了解了自编码器无法在潜空间中的空白位置处生成逼真的图像,且空间分布并不均匀,为了解决这些问题#

    2024年02月05日
    浏览(38)
  • 生成模型之VAE与VQ-VAE

            有关图像处理的课程作业需要学习一篇论文,此论文中作者使用了VQ-VAE模型对舞蹈动作进行编码。因此,对相关知识略作整理以供之后查找。          AE、VAE和VQ-VAE可以统一为latent code的概率分布设计不一样,AEr通过网络学习得到任意概率分布,VAE设计为正态分布

    2024年02月15日
    浏览(44)
  • 生成模型—VAE

    为进一步了解面部反应生成模型的原理,故详细学习VAE。 感谢李宏毅老师的视频! 自编码器是一种 无监督学习 的神经网络模型,可以用于数据降维、特征压缩、特征提取、数据生成等任务。其主要思想是尝试将输入数据通过编码器(Encoder)转换为一个 低维度 的潜在特征空

    2024年02月02日
    浏览(40)
  • [PyTorch][chapter 53][Auto Encoder 实战]

    前言:      结合手写数字识别的例子,实现以下AutoEncoder      ae.py:  实现autoEncoder 网络      main.py: 加载手写数字数据集,以及训练,验证,测试网络。 左图:原图像 右图:重构图像  ----main-----  每轮训练时间 : 91 0 loss: 0.02758789248764515  每轮训练时间 : 95 1 loss: 0.024654

    2024年02月10日
    浏览(44)
  • 生成模型经典算法-VAE&GAN(含Python源码例程)

    深度学习是一种人工智能的技术,其最大的特点是能够对复杂的数据进行分析和处理。在深度学习中,生成模型和判别模型是两个重要的概念,它们可以帮助我们更好地理解深度学习的工作原理并实现不同的任务。 生成模型和判别模型的区别在于,生成模型是通过学习输入数

    2024年02月06日
    浏览(36)
  • 手把手教你训练一个VAE生成模型一生成手写数字

    VAE(Variational Autoencoder)变分自编码器是一种使用变分推理的自编码器,其主要用于生成模型。 VAE 的编码器是模型的一部分,用于将输入数据压缩成潜在表示,即编码。 VAE 编码器包括两个子网络:一个是推断网络,另一个是生成网络。推断网络输入原始输入数据,并输出两

    2024年02月06日
    浏览(59)
  • 李沐论文精读系列五:DALL·E2(生成模型串讲,从GANs、VE/VAE/VQ-VAE/DALL·E到扩散模型DDPM/ADM)

    传送门: 李沐论文精读系列一: ResNet、Transformer、GAN、BERT 李沐论文精读系列二:Vision Transformer、MAE、Swin-Transformer 李沐论文精读系列三:MoCo、对比学习综述(MoCov1/v2/v3、SimCLR v1/v2、DINO等) 李沐论文精读系列四:CLIP和改进工作串讲(LSeg、GroupViT、VLiD、 GLIPv1、 GLIPv2、CLIPas

    2024年02月10日
    浏览(44)
  • 图像生成模型【自编码器、RNN、VAE、GAN、Diffusion、AIGC等】

    目录 监督学习 与 无监督学习 生成模型 自编码器 从线性维度压缩角度: 2D-1D 线性维度压缩: 3D-2D 推广线性维度压缩 流形 自编码器:流形数据的维度压缩 全图像空间 自然图像流形 自编码器的去噪效果 自编码器的问题 图像预测 (“结构化预测”) 显式密度模型 RNN PixelRNN [van

    2024年02月10日
    浏览(44)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包