【Pytorch】torch.nn.LeakyReLU()

这篇具有很好参考价值的文章主要介绍了【Pytorch】torch.nn.LeakyReLU()。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

nn.leakyrelu,pytorch,深度学习,人工智能

简介

Hello!
非常感谢您阅读海轰的文章,倘若文中有错误的地方,欢迎您指出~
 
ଘ(੭ˊᵕˋ)੭
昵称:海轰
标签:程序猿|C++选手|学生
简介:因C语言结识编程,随后转入计算机专业,获得过国家奖学金,有幸在竞赛中拿过一些国奖、省奖…已保研
学习经验:扎实基础 + 多做笔记 + 多敲代码 + 多思考 + 学好英语!
 
唯有努力💪
 
本文仅记录自己感兴趣的内容

torch.nn.LeakyReLU()

语法

torch.nn.LeakyReLU(negative_slope=0.01, inplace=False)

作用

构建一个LeakyReLU函数,明确此函数中的一些参数

参数

  • negative_slope:x为负数时的需要的一个系数,控制负斜率的角度。默认值:1e-2
  • inplace:可以选择就地执行操作。默认值:False

nn.leakyrelu,pytorch,深度学习,人工智能

举例

m = nn.LeakyReLU(0.1) # 构建LeakyReLU函数
input = torch.randn(2) # 输入
output = m(input) # 对输入应用LeakyReLU函数

print(input)
print(output)

nn.leakyrelu,pytorch,深度学习,人工智能


参数inplace为True时

nn.leakyrelu,pytorch,深度学习,人工智能

nn.leakyrelu,pytorch,深度学习,人工智能

相当于 x < 0 x<0 x<0,LeakyReLU(x) = x (与大于0时一致了,输入是啥,输出就是啥)

参考

  • https://pytorch.org/docs/stable/generated/torch.nn.LeakyReLU.html#torch.nn.LeakyReLU

结语

文章仅作为个人学习笔记记录,记录从0到1的一个过程

希望对您有一点点帮助,如有错误欢迎小伙伴指正

nn.leakyrelu,pytorch,深度学习,人工智能文章来源地址https://www.toymoban.com/news/detail-781870.html

到了这里,关于【Pytorch】torch.nn.LeakyReLU()的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Pytorch学习笔记(5):torch.nn---网络层介绍(卷积层、池化层、线性层、激活函数层)

     一、卷积层—Convolution Layers  1.1 1d / 2d / 3d卷积 1.2 卷积—nn.Conv2d() nn.Conv2d 1.3 转置卷积—nn.ConvTranspose nn.ConvTranspose2d  二、池化层—Pooling Layer (1)nn.MaxPool2d (2)nn.AvgPool2d (3)nn.MaxUnpool2d  三、线性层—Linear Layer  nn.Linear  四、激活函数层—Activate Layer (1)nn.Sigmoid  (

    2024年01月20日
    浏览(41)
  • Pytorch:torch.nn.Module

    torch.nn.Module 是 PyTorch 中神经网络模型的基类,它提供了模型定义、参数管理和其他相关功能。 以下是关于 torch.nn.Module 的详细说明: 1. torch.nn.Module 的定义: torch.nn.Module 是 PyTorch 中所有神经网络模型的基类,它提供了模型定义和许多实用方法。自定义的神经网络模型应该继

    2024年01月16日
    浏览(45)
  • Pytorch-----torch.nn.Module.modules()

    在使用pytorch构建神经网络时,定义的网络模型必须要继承自torch.nn.Module这一父类。在Module类中,有一个函数可以返回网络中所有模块的迭代器。这就是torch.nn.Module.modules() 提示:以下是本篇文章正文内容,下面案例可供参考 源码中的解释如下: 不只是返回网络中的某一层,

    2024年02月14日
    浏览(45)
  • PyTorch中的torch.nn.Parameter() 详解

    今天来聊一下PyTorch中的torch.nn.Parameter()这个函数,笔者第一次见的时候也是大概能理解函数的用途,但是具体实现原理细节也是云里雾里,在参考了几篇博文,做过几个实验之后算是清晰了,本文在记录的同时希望给后来人一个参考,欢迎留言讨论。 先看其名,parameter,中文

    2023年04月08日
    浏览(85)
  • PyTorch中的torch.nn.Linear函数解析

    torch.nn是包含了构筑神经网络结构基本元素的包,在这个包中,可以找到任意的神经网络层。这些神经网络层都是nn.Module这个大类的子类。torch.nn.Linear就是神经网络中的线性层,可以实现形如y=Xweight^T+b的加和功能。 nn.Linear():用于设置网络中的全连接层,需要注意的是全连接

    2024年02月16日
    浏览(39)
  • 深入浅出Pytorch函数——torch.nn.Linear

    分类目录:《深入浅出Pytorch函数》总目录 对输入数据做线性变换 y = x A T + b y=xA^T+b y = x A T + b 语法 参数 in_features :[ int ] 每个输入样本的大小 out_features :[ int ] 每个输出样本的大小 bias :[ bool ] 若设置为 False ,则该层不会学习偏置项目,默认值为 True 变量形状 输入变量:

    2024年02月12日
    浏览(43)
  • 深入浅出Pytorch函数——torch.nn.Softmax

    分类目录:《深入浅出Pytorch函数》总目录 相关文章: · 机器学习中的数学——激活函数:Softmax函数 · 深入浅出Pytorch函数——torch.softmax/torch.nn.functional.softmax · 深入浅出Pytorch函数——torch.nn.Softmax 将Softmax函数应用于 n n n 维输入张量,重新缩放它们,使得 n n n 维输出张量的

    2024年02月15日
    浏览(54)
  • 深入浅出Pytorch函数——torch.nn.Module

    分类目录:《深入浅出Pytorch函数》总目录 Pytorch中所有网络的基类,我们的模型也应该继承这个类。 Modules 也可以包含其它 Modules ,允许使用树结构嵌入他们,我们还可以将子模块赋值给模型属性。 语法 方法 torch.nn.Module.apply 实例 通过上面方式赋值的 submodule 会被注册,当调

    2024年02月12日
    浏览(63)
  • Pytorch:torch.nn.Module.apply用法详解

    torch.nn.Module.apply 是 PyTorch 中用于递归地应用函数到模型的所有子模块的方法。它允许对模型中的每个子模块进行操作,比如初始化权重、改变参数类型等。 以下是关于 torch.nn.Module.apply 的示例: 1. 语法 Module:PyTorch 中的神经网络模块,例如 torch.nn.Module 的子类。 fn:要应用到

    2024年01月15日
    浏览(48)
  • 深入浅出Pytorch函数——torch.softmax/torch.nn.functional.softmax

    分类目录:《深入浅出Pytorch函数》总目录 相关文章: · 机器学习中的数学——激活函数:Softmax函数 · 深入浅出Pytorch函数——torch.softmax/torch.nn.functional.softmax · 深入浅出Pytorch函数——torch.nn.Softmax 将Softmax函数应用于沿 dim 的所有切片,并将重新缩放它们,使元素位于 [ 0 ,

    2024年02月15日
    浏览(64)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包