奇异值分解在图形压缩中的应用

这篇具有很好参考价值的文章主要介绍了奇异值分解在图形压缩中的应用。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

奇异值分解在图形压缩中的应用


在研究奇异值分解的工程应用之前,我们得明白什么是奇异值?什么是奇异向量?

奇异值与奇异向量

概念:奇异值描述了矩阵在一组特定向量上的行为,奇异向量描述了其最大的作用方向。

奇异值分解(SVD)

矩阵A的分解涉及一个 m × n m \times n m×n的矩阵 Σ \Sigma Σ,其中 Σ \Sigma Σ= [ D 0 0 0 ] \begin{bmatrix} D &0\\0&0\end{bmatrix} [D000],D是一个 r × r r\times r r×r的方阵 ( r ≤ m , r ≤ n ) ( r \leq m , r\leq n) (rm,rn)

定理:设A是秩为 r r r m × n m\times n m×n的矩阵,那么存在一个类似于 Σ \Sigma Σ的矩阵,其中 D D D的对角线元素是 A A A的前 r r r个奇异值, σ 1 ≥ σ 2 ≥ σ 3 ≥ . . . ≥ σ r > 0 \sigma_1 \geq\sigma_2 \geq\sigma_3 \geq... \geq\sigma_r>0 σ1σ2σ3...σr>0并且存在一个 m × m m\times m m×m的正交矩阵 U U U 和一个 n × n n\times n n×n的正交矩阵 V T V^T VT使得 A = U Σ V T A=U\Sigma V^T A=UΣVT

奇异值分解计算过程

我们先假设一个矩阵 A = [ 2 3   0 2 ] A = \begin{bmatrix} 2 & 3 \\ \ 0 & 2\end{bmatrix} A=[2 032]
U = [ u 1 u 2 u 3 . . . ] U=[u_1 u_2 u_3 ...] U=[u1u2u3...] , ∑ = d i a g [ σ 1 σ 2 σ 3 . . . ] \sum = diag[\sigma_1 \sigma_2 \sigma_3 ...] =diag[σ1σ2σ3...] , V = [ v 1 v 2 v 3 . . . ] T V=\begin{bmatrix} v_1 \\ v_2\\ v_3 \\ ...\end{bmatrix}^T V= v1v2v3... T
其中 U U U代表A的正交矩阵; ∑ \sum 代表A的由奇异值组成的左奇异向量矩阵; V V V代表A的右奇异向量矩阵。

求A的 U , ∑ , V U , \sum , V U,,V.

  1. 计算 A T A A^TA ATA
    A T A = [ 2 0 3 2 ] [ 2 3 0 2 ] = [ 13 6 6 4 ] A^TA =\begin{bmatrix} 2&0\\3&2 \end{bmatrix} \begin{bmatrix} 2&3\\0&2\end{bmatrix}= \begin{bmatrix} 13&6\\6&4 \end{bmatrix} ATA=[2302][2032]=[13664]
  2. 计算 A T A A^TA ATA的奇异值 σ \sigma σ
    σ 1 2 σ 2 2 = d e t A T A = 16 σ 1 2 + σ 2 2 = t r A T A = 17 ∴ σ 1 2 = 16 , σ 2 2 = 1 ∴ σ 1 = 4 , σ 2 = 1 ∴ Σ = [ 4 0 0 1 ] \sigma_1^2\sigma_2^2 = det A^TA = 16 \\ \sigma_1^2 + \sigma_2^2 = tr A^TA = 17 \\ \therefore \sigma_1^2 =16, \sigma_2^2= 1\\ \therefore \sigma_1 =4, \sigma_2= 1\\ \therefore \Sigma=\begin{bmatrix} 4&0\\0&1 \end{bmatrix} σ12σ22=detATA=16σ12+σ22=trATA=17σ12=16,σ22=1σ1=4,σ2=1Σ=[4001]
  3. σ 1 , σ 2 \sigma_1,\sigma_2 σ1,σ2带入 A T A A^TA ATA中求其特征向量
    v 1 = [ 1 5 2 5 ] , v 2 = [ − 2 5 1 5 ] ∴ V = [ 1 5 − 2 5 2 5 1 5 ] \\ v_1= \begin{bmatrix} \frac{1}{\sqrt5} \\\\ \frac{2}{\sqrt5} \end{bmatrix} , v_2= \begin{bmatrix} -\frac{2}{\sqrt5}\\\\\frac{1}{\sqrt5} \end{bmatrix} \\\therefore V= \begin{bmatrix} \frac{1}{\sqrt5}&-\frac{2}{\sqrt5} \\\\ \frac{2}{\sqrt5}&\frac{1}{\sqrt5}\end{bmatrix} v1= 5 15 2 ,v2= 5 25 1 V= 5 15 25 25 1
  4. 构造标准正交向量
    u i = 1 σ i A v i ∴ u 1 = 1 σ 1 A v 1 = 1 4 [ 2 3 0 2 ] [ 1 5 2 5 ] = [ 2 5 1 5 ] ∴ u 2 = 1 σ 2 A v 2 = 1 1 [ 2 3 0 2 ] [ − 2 5 1 5 ] = [ − 1 5 2 5 ] ∴ U = ( u 1 , u 2 ) = [ 2 5 − 1 5 1 5 2 5 ] u_i=\frac{1}{\sigma_i}Av_i \\ \therefore u_1=\frac{1}{\sigma_1}Av_1=\frac{1}{4}\begin{bmatrix} 2&3\\\\0&2\end {bmatrix} \begin{bmatrix} \frac{1}{\sqrt5} \\\\ \frac{2}{\sqrt5} \end{bmatrix} =\begin{bmatrix} \frac{2}{\sqrt5}\\ \\ \frac{1}{\sqrt5} \end {bmatrix} \\ \therefore u_2=\frac{1}{\sigma_2}Av_2=\frac{1}{1}\begin{bmatrix} 2&3\\\\0&2\end {bmatrix} \begin{bmatrix} - \frac{2}{\sqrt5} \\\\ \frac{1}{\sqrt5} \end{bmatrix} =\begin{bmatrix} -\frac{1}{\sqrt5}\\ \\ \frac{2}{\sqrt5} \end {bmatrix} \\ \therefore U=(u_1,u_2)=\begin{bmatrix} \frac{2}{\sqrt5} & -\frac{1}{\sqrt5} \\ \\ \frac{1}{\sqrt5} &\frac{2}{\sqrt5} \end{bmatrix} ui=σi1Aviu1=σ11Av1=41 2032 5 15 2 = 5 25 1 u2=σ21Av2=11 2032 5 25 1 = 5 15 2 U=(u1,u2)= 5 25 15 15 2
  5. 写出表达式
    A = U Σ V T = [ 2 5 − 1 5 1 5 2 5 ] [ 4 0   0 1 ] [ 1 5 2 5 − 2 5 1 5 ] A=U\Sigma V^T=\begin{bmatrix} \frac{2}{\sqrt5} & -\frac{1}{\sqrt5} \\ \\ \frac{1}{\sqrt5} &\frac{2}{\sqrt5} \end{bmatrix} \begin{bmatrix} 4 & 0 \\\\ \ 0 & 1\end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt5}& \frac{2}{\sqrt5}\\\\ -\frac{2}{\sqrt5}&\frac{1}{\sqrt5}\end{bmatrix} A=UΣVT= 5 25 15 15 2 4 001 5 15 25 25 1

利用奇异值分解(SVD)进行图片压缩

首先我们先找一张图片来进行实验。
奇异值分解在图形压缩中的应用,线性代数,线性代数

通道分离

对于JPG格式的彩色图片,拥有3个颜色通道,R(红)、G(绿)、B(蓝),那么可以尝试将每个颜色通道进行分离,产生3个形状均为图像高 x 宽 的单通道剧展,即imageR,imageG,imageB。

进行通道分离,将imageArray数组中的每个通道分别单独取出来,得到3个高 × \times × 宽的二维数组。这3个二维数组中每个位置上的取值就是对应像素的某个颜色通道的取值,代码如下:

import numpy as np
from PIL import Image
 
originalImage = Image.open(r'teriri.jpg', 'r')
imageArray = np.array(originalImage)
R = imageArray[:, :, 0]
G = imageArray[:, :, 1]
B = imageArray[:, :, 2]
print(R)
print(G)
print(B)

运行结果如下:

[[207 207 207 … 141 141 141]
[207 207 207 … 141 141 141]
[207 207 207 … 141 141 141]

[246 247 248 … 239 239 239]
[246 247 248 … 239 239 239]
[246 247 248 … 239 239 239]]
[[198 198 198 … 126 126 126]
[198 198 198 … 126 126 126]
[198 198 198 … 126 126 126]

[233 234 235 … 235 235 235]
[233 234 235 … 235 235 235]
[233 234 235 … 235 235 235]]
[[215 215 215 … 149 147 147]
[215 215 215 … 149 147 147]
[215 215 215 … 149 147 147]

[230 231 233 … 203 203 203]
[230 231 233 … 203 203 203]
[230 231 233 … 203 203 203]]

至此,我们成功得到了3个二维ndarray数组,将R、G、B三个通道成功进行了分离。

矩阵压缩

对每个单通道矩阵进行奇异值分解,按照压缩的实际需要取前k个奇异值,进行3个单通道的矩阵的压缩,最后分别形成3个压缩后的矩阵:imageRC,imageGC,imageBC,代码如下:

def imgCompress(channel,percent):
    U,sigma,V_T = np.linalg.svd(channel)
    m = U.shape[0]
    n = V_T.shape[0]
    reChannel = np.zeros((m,n))
    for k in range (len(sigma)):
        reChannel = reChannel + sigma[k] * np.dot(U[:,k].reshape(m,1),V_T[k,:].reshape(1,n))
        if float(k) / len(sigma) > percent:
            reChannel[reChannel < 0] = 0
            reChannel[reChannel > 255] = 255
            break
        return np.rint(reChannel).astype("unit8")

图像重建

将经过奇异值分解处理的3个单通道矩阵合并,从而重构出压缩后的彩色图像。

    for p in [0.001, 0.005, 0.01, 0.02, 0.03, 0.04, 0.05, 
              0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]:
    #p表示取所有奇异值的前多少比例
        reR = imgCompress(R,p)
        reG = imgCompress(G,p)
        reB = imgCompress(B,p)
        reI = np.stack((reR,reG,reB),2)
        Image.fromarray(reI).save("{}".format(p)+"img.png")

整体运行结果如下:

比例为0.001至0.04
奇异值分解在图形压缩中的应用,线性代数,线性代数>0.05至0.5
奇异值分解在图形压缩中的应用,线性代数,线性代数
0.6至原图
奇异值分解在图形压缩中的应用,线性代数,线性代数
总结:文章来源地址https://www.toymoban.com/news/detail-781892.html

  1. 取前0.1%奇异值重建的图像是一个非常模糊的,基本只能看到大体轮廓。
  2. 取前1%奇异值重建的图像就可以看到一个比较清晰的图片了。
  3. 随着比例的提升,图片越来越清晰,到30%的时候就基本与原图一致了。

到了这里,关于奇异值分解在图形压缩中的应用的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 线性代数中的矩阵分解与稀疏处理

    线性代数是计算机科学、数学、物理等多个领域的基础知识之一,其中矩阵分解和稀疏处理是线性代数中非常重要的两个方面。矩阵分解是指将一个矩阵分解为多个较小的矩阵的过程,这有助于我们更好地理解和解决问题。稀疏处理是指处理那些主要由零组成的矩阵的方法,

    2024年04月15日
    浏览(48)
  • 奇异值分解(SVD)和图像压缩

    在本文中,我将尝试解释 SVD 背后的数学及其几何意义,还有它在数据科学中的最常见的用法,图像压缩。 奇异值分解是一种常见的线性代数技术,可以将任意形状的矩阵分解成三个部分的乘积:U、S、V。原矩阵A可以表示为: 具体来说,A矩阵中的奇异值就是Sigma矩阵中的对

    2023年04月10日
    浏览(45)
  • 矩阵分解是计算机科学中的一个重要研究领域,涉及到向量空间理论、线性代数、密码学等领域。以下是100篇热门博客文

    作者:禅与计算机程序设计艺术 矩阵分解是计算机科学中的一个重要研究领域,涉及到向量空间理论、线性代数、密码学等领域。在机器学习和深度学习等领域中,矩阵分解被广泛应用。本文将介绍矩阵分解的相关原理、实现步骤以及应用示例。 2.1 基本概念解释 矩阵分解是

    2024年02月15日
    浏览(56)
  • 【线性代数及其应用 —— 第一章 线性代数中的线性方程组】-1.线性方程组

    所有笔记请看: 博客学习目录_Howe_xixi的博客-CSDN博客 https://blog.csdn.net/weixin_44362628/article/details/126020573?spm=1001.2014.3001.5502 思维导图如下:  内容笔记如下:

    2024年02月06日
    浏览(64)
  • 线性代数在AI中的应用

    作者:禅与计算机程序设计艺术 人工智能(AI)作为当今技术发展的前沿领域,在近几年中迅速崛起,在各行各业都得到了广泛的应用。这其中,线性代数作为AI算法的基础数学工具,在AI模型的构建、训练和优化中发挥着关键作用。本文将深入探讨线性代数在AI领域的核心应用,帮助读

    2024年04月11日
    浏览(45)
  • 线性代数在游戏开发中的应用

    线性代数是数学中的一个重要分支,它主要研究的是线性方程组和向量空间等概念。在现实生活中,线性代数的应用非常广泛,包括经济、科学、工程等各个领域。游戏开发也不例外,线性代数在游戏中的应用非常广泛,包括游戏物理引擎的实现、游戏AI的智能化、游戏优化

    2024年02月20日
    浏览(45)
  • 线性代数在图论中的应用

    图论是一门研究有限数量的点(节点)和它们之间的关系(边)的学科。图论在计算机科学、数学、物理、生物学和社会科学等领域具有广泛的应用。线性代数则是一门研究向量和矩阵的学科,它在许多领域中都有着重要的应用,包括物理学、生物学、经济学和人工智能等。

    2024年02月03日
    浏览(45)
  • 线性代数在生物信息学中的应用

    生物信息学是一门研究生物学信息的科学,它涉及到生物数据的收集、存储、处理、分析和挖掘。生物信息学的应用范围广泛,包括基因组学、蛋白质结构和功能、生物网络、生物信息数据库等方面。线性代数是一门数学分支,它研究的是向量和矩阵之间的关系和运算。线性

    2024年04月28日
    浏览(42)
  • [Eigen中文文档] 线性代数与分解

    文档总目录 英文原文(Linear algebra and decomposition) 本节说明如何求解线性系统,计算各种分解,如 LU 、 QR 、 SVD 、 特征分解 …… 求解基本线性系统 问题 :有一个方程组,写成矩阵方程如下: A x = b Ax = b A x = b 其中 A A A 和 b b b 是矩阵(作为一种特殊情况, b b b 也可以是一个

    2024年02月07日
    浏览(42)
  • 线性代数中的向量和向量空间的应用

    作者:禅与计算机程序设计艺术 作为一位人工智能专家,程序员和软件架构师,我深知线性代数在数据处理和机器学习中的重要性。本文旨在探讨线性代数中向量和向量空间的应用,帮助读者更好地理解和应用这些技术。 技术原理及概念 线性代数是数学的一个分支,主要研

    2024年02月14日
    浏览(52)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包