【路径规划】基于matlab火鹰算法栅格地图机器人最短路径规划【含Matlab源码 3679期】

这篇具有很好参考价值的文章主要介绍了【路径规划】基于matlab火鹰算法栅格地图机器人最短路径规划【含Matlab源码 3679期】。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,Matlab项目合作可私信。
🍎个人主页:海神之光
🏆代码获取方式:
海神之光Matlab王者学习之路—代码获取方式
⛳️座右铭:行百里者,半于九十。

更多Matlab仿真内容点击👇
Matlab图像处理(进阶版)
路径规划(Matlab)
神经网络预测与分类(Matlab)
优化求解(Matlab)
语音处理(Matlab)
信号处理(Matlab)
车间调度(Matlab)

⛄一、火鹰算法及栅格地图简介

FHO算法模拟了火鹰的觅食行为,是一个考虑放火、火势蔓延与捕捉猎物的过程。

FHO数学模型描述如下:
Step 1: 首先,确定若干候选解X作为火鹰与猎物的位置向量,利用随机优化确定初始位置;

Step 2: 其次,确定猎物与火鹰在搜索空间的位置,将候选解中的具有较好函数值的表示为火鹰的位置,其余的表示为猎物的位置;

Step 3: 计算出火鹰与猎物之间的总距离;

Step 4: 根据火鹰的两种不同的点火行为,进行位置更新;

Step 5: 根据火鹰在领地内的移动行为进行位置的更新;

Step 6: 根据猎物的躲避行为,更新火鹰的位置;

Step 7:以猎物聚集多的地方作为安全地带的选取。

2 栅格地图
2.1 栅格法应用背景
路径规划时首先要获取环境信息, 建立环境地图, 合理的环境表示有利于建立规划方法和选择合适的搜索算法,最终实现较少的时间开销而规划出较为满意的路径。一般使用栅格法在静态环境下建立环境地图。
2.2 栅格法实质
将AGV的工作环境进行单元分割, 将其用大小相等的方块表示出来,这样栅格大小的选取是影响规划算法性能的一个很重要的因素。栅格较小的话,由栅格地图所表示的环境信息将会非常清晰,但由于需要存储较多的信息,会增大存储开销,同时干扰信号也会随之增加,规划速度会相应降低,实时性得不到保证;反之,由于信息存储量少,抗干扰能力有所增强,规划速随之增快,但环境信息划分会变得较为模糊,不利于有效路径的规划。在描述环境信息时障碍物所在区域在栅格地图中呈现为黑色,地图矩阵中标为1,可自由通行区域在栅格地图中呈现为白色,地图矩阵中标为0。路径规划的目的就是在建立好的环境地图中找到一条最优的可通行路径,所以使用栅格法建立环境地图时,栅格大小的合理设定非常关键。
2.3 10乘10的静态环境地图
【路径规划】基于matlab火鹰算法栅格地图机器人最短路径规划【含Matlab源码 3679期】,Matlab路径规划(进阶版),matlab
10乘10的静态环境地图代码

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%建立环境地图%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function DrawMap(map)
n = size(map);
step = 1;
a = 0 : step :n(1);
b = 0 : step :n(2);
figure(1)
axis([0 n(2) 0 n(1)]); %设置地图横纵尺寸
set(gca,'xtick',b,'ytick',a,'GridLineStyle','-',...
'xGrid','on','yGrid','on');
hold on
r = 1;
for(i=1:n(1))         %设置障碍物的左下角点的x,y坐标
    for(j=1:n(2))
        if(map(i,j)==1)
            p(r,1)=j-1;
            p(r,2)=i-1;
            fill([p(r,1) p(r,1) + step p(r,1) + step p(r,1)],...
                 [p(r,2) p(r,2) p(r,2) + step p(r,2) + step ],'k');
            r=r+1;
            hold on
        end
    end
end
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%栅格数字标识%%%%%%%%%%%%%%%%%%%%%%%%%%%%
x_text = 1:1:n(1)*n(2); %产生所需数值.
for i = 1:1:n(1)*n(2)
    [row,col] = ind2sub([n(2),n(1)],i);
    text(row-0.9,col-0.5,num2str(x_text(i)),'FontSize',8,'Color','0.7 0.7 0.7');
end
hold on
axis square

建立环境矩阵,1代表黑色栅格,0代表白色栅格,调用以上程序,即可得到上述环境地图。

map=[0 0 0 1 0 0 1 0 0 0;
     1 0 0 0 0 1 1 0 0 0;
     0 0 1 0 0 0 1 1 0 0;
     0 0 0 0 0 0 0 0 0 0;
     0 0 0 0 0 1 0 0 1 0;
     1 0 0 0 0 1 1 0 0 0;
     0 0 0 1 0 0 0 0 0 0;
     1 1 1 0 0 0 1 0 0 0;
     0 0 0 0 0 1 1 0 0 0;
     0 0 0 0 0 1 1 0 0 0;];
     DrawMap(map);         %得到环境地图

2.4 栅格地图中障碍栅格处路径约束
移动体栅格环境中多采用八方向的移动方式,此移动方式在完全可通行区域不存在运行安全问题,当
移动体周围存在障碍栅格时此移动方式可能会发生与障碍物栅格的碰撞问题,为解决此问题加入约束
条件,当在分别与障碍物栅格水平方向和垂直方向的可行栅格两栅格之间通行时,禁止移动体采用对
角式移动方式。
【路径规划】基于matlab火鹰算法栅格地图机器人最短路径规划【含Matlab源码 3679期】,Matlab路径规划(进阶版),matlab
【路径规划】基于matlab火鹰算法栅格地图机器人最短路径规划【含Matlab源码 3679期】,Matlab路径规划(进阶版),matlab
约束条件的加入,实质是改变栅格地图的邻接矩阵,将障碍栅格(数字为“1”的矩阵元素)的对角栅格
设为不可达, 即将对角栅格的距离值改为无穷大。其实现MATLAB代码如下:
代码:

%约束移动体在障碍栅格对角运动
%通过优化邻接矩阵实现
%%%%%%%%%%%%%%%%%% 约束移动体移动方式 %%%%%%%%%%%%%%%%%
function W=OPW(map,W)
% map 地图矩阵  % W 邻接矩阵
n = size(map);
num = n(1)*n(2);
for(j=1:n(1))
    for(z=1:n(2))
       if(map(j,z)==1)
          if(j==1)                  %若障碍物在第一行
             if(z==1)               %若障碍物为第一行的第一个
                W(j+1,j+n(2)*j)=Inf;
                W(j+n(2)*j,j+1)=Inf;
             else
                if(z==n(2))         %若障碍物为第一行的最后一个
                   W(n(2)-1,n(2)+n(1)*j)=Inf;
                   W(n(2)+n(1)*j,n(2)-1)=Inf;
                else                %若障碍物为第一行的其他
                    W(z-1,z+j*n(2))=Inf;
                    W(z+j*n(2),z-1)=Inf;
                    W(z+1,z+j*n(2))=Inf;
                    W(z+j*n(2),z+1)=Inf;
                end
             end
          end
          if(j==n(1))               %若障碍物在最后一行
             if(z==1)               %若障碍物为最后一行的第一个
                W(z+n(2)*(j-2),z+n(2)*(j-1)+1)=Inf;
                W(z+n(2)*(j-1)+1,z+n(2)*(j-2))=Inf;
             else
             if(z==n(2))            %若障碍物为最后一行的最后一个
                W(n(1)*n(2)-1,(n(1)-1)*n(2))=Inf;
                W((n(1)-1)*n(2),n(1)*n(2)-1)=Inf;
             else                   %若障碍物为最后一行的其他
                W((j-2)*n(2)+z,(j-1)*n(2)+z-1)=Inf;
                W((j-1)*n(2)+z-1,(j-2)*n(2)+z)=Inf;
                W((j-2)*n(2)+z,(j-1)*n(2)+z+1)=Inf;
                W((j-1)*n(2)+z+1,(j-2)*n(2)+z)=Inf;
             end
             end
          end
          if(z==1)              
             if(j~=1&&j~=n(1))       %若障碍物在第一列非边缘位置 
                W(z+(j-2)*n(2),z+1+(j-1)*n(2))=Inf;
                W(z+1+(j-1)*n(2),z+(j-2)*n(2))=Inf;
                W(z+1+(j-1)*n(2),z+j*n(2))=Inf;
                W(z+j*n(2),z+1+(j-1)*n(2))=Inf;
             end
          end
         if(z==n(2))
            if(j~=1&&j~=n(1))         %若障碍物在最后一列非边缘位置 
               W((j+1)*n(2),j*n(2)-1)=Inf;
               W(j*n(2)-1,(j+1)*n(2))=Inf;
               W(j*n(2)-1,(j-1)*n(2))=Inf;
               W((j-1)*n(2),j*n(2)-1)=Inf;
            end
         end
         if(j~=1&&j~=n(1)&&z~=1&&z~=n(2))   %若障碍物在非边缘位置
            W(z+(j-1)*n(2)-1,z+j*n(2))=Inf;
            W(z+j*n(2),z+(j-1)*n(2)-1)=Inf;
            W(z+j*n(2),z+(j-1)*n(2)+1)=Inf;
            W(z+(j-1)*n(2)+1,z+j*n(2))=Inf;
            W(z+(j-1)*n(2)-1,z+(j-2)*n(2))=Inf;
            W(z+(j-2)*n(2),z+(j-1)*n(2)-1)=Inf;
            W(z+(j-2)*n(2),z+(j-1)*n(2)+1)=Inf;
            W(z+(j-1)*n(2)+1,z+(j-2)*n(2))=Inf;
         end
       end
     end
   end
end

2.5 栅格法案例
下面以Djkstra算法为例, 其实现如下:

map=[0 0 0 1 0 0 1 0 0 0;
     1 0 0 0 0 1 1 0 0 0;
     0 0 1 0 0 0 1 1 0 0;
     0 0 0 0 0 0 0 0 0 0;
     0 0 0 0 0 1 0 0 1 0;
     1 0 0 0 0 1 1 0 0 0;
     0 0 0 1 0 0 0 0 0 0;
     1 1 1 0 0 0 1 0 0 0;
     0 0 0 0 0 1 1 0 0 0;
     0 0 0 0 0 1 1 0 0 0;];

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%建立环境矩阵map%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
DrawMap(map); %得到环境地图
W=G2D(map);   %得到环境地图的邻接矩阵
W(W==0)=Inf;  %邻接矩阵数值处理
W=OPW(map,W); %优化邻接矩阵
[distance,path]=dijkstra(W,1,100);%设置起始栅格,得到最短路径距离以及栅格路径
[x,y]=Get_xy(distance,path,map);   %得到栅格相应的x,y坐标
Plot(distance,x,y);   %画出路径


运行结果如下:
【路径规划】基于matlab火鹰算法栅格地图机器人最短路径规划【含Matlab源码 3679期】,Matlab路径规划(进阶版),matlab
其中函数程序:
DrawMap(map) 详见建立栅格地图
W=G2D(map) ; 详见建立邻接矩阵
[distance, path] =dijkstra(W, 1, 100) 详见Djk stra算法
[x, y] =Get_xy(distance, path, map) ;
Plot(distance, x, y) ;

⛄二、部分源代码

clc
clear
close all
tic
%% 地图
G=[0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;
0 1 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0;
0 1 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0;
0 1 1 1 0 0 1 1 1 0 1 1 1 1 0 0 0 0 0 0;
0 1 1 1 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0;
0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0;
0 0 0 0 1 1 0 1 1 0 1 1 1 1 0 0 0 0 0 0;
0 0 0 0 1 0 0 1 1 0 1 1 1 1 0 0 0 0 0 0;
0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 0;
0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 0;
1 1 1 1 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 0;
1 1 1 1 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 1 1 0 1 1 1 0 0 0 0 0 1 1 0;
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0;
0 0 1 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0;
0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0;];
for i=1:20/2
for j=1:20
m=G(i,j);
n=G(21-i,j);
G(i,j)=n;
G(21-i,j)=m;
end
end
%%
S = [1 1];
E = [20 20];
G0 = G;
G = G0(S(1):E(1),S(2):E(2));
[Xmax,dimensions] = size(G);
dimensions = dimensions - 2;
X_min = 1;
%% 参数设置
max_gen = 200; % 最大迭代次数
num_polution = 50; % 种群数量
fboj=@(x)fitness(x,G,X_min,Xmax);

⛄三、运行结果

【路径规划】基于matlab火鹰算法栅格地图机器人最短路径规划【含Matlab源码 3679期】,Matlab路径规划(进阶版),matlab
【路径规划】基于matlab火鹰算法栅格地图机器人最短路径规划【含Matlab源码 3679期】,Matlab路径规划(进阶版),matlab

⛄四、matlab版本及参考文献

1 matlab版本
2014a

2 参考文献
[1]陈云霁,范道生,刘新宇. “基于正弦余弦算法的自主导航机器人路径规划研究.” 自动化学报,2012年,38(8): 1465-1474.
[2]陈云霁,范道生,刘新宇. “基于正弦余弦算法的机器人路径规划实验研究.” 科技通报,2011年,27(11): 68-71.
[3]张银红,杨琳. “基于正弦余弦算法的栅格地图机器人路径规划研究.” 计算机技术与发展,2012年,22(7): 12-15.
[4]刘江波,吴天一. 《栅格地图机器人路径规划算法及其应用》. 清华大学出版社,2016年.

3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除

🍅 仿真咨询
1 各类智能优化算法改进及应用

生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

3 图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

4 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

5 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配

6 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

7 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置

9 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长

10 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合文章来源地址https://www.toymoban.com/news/detail-781986.html

到了这里,关于【路径规划】基于matlab火鹰算法栅格地图机器人最短路径规划【含Matlab源码 3679期】的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 基于Bresenham直线算法的机器人栅格地图路径规划(附带Matlab代码)

    基于Bresenham直线算法的机器人栅格地图路径规划(附带Matlab代码) 路径规划是机器人导航中的关键任务之一,它涉及寻找从起点到目标点的最优路径。在栅格地图中,机器人通常被表示为一个点,而障碍物被表示为栅格单元。Bresenham直线算法是一种经典的图形算法,可以用于

    2024年02月07日
    浏览(49)
  • 【路径规划】基于matlab帝企鹅算法栅格地图机器人最短路径规划【含Matlab源码 3630期】

    1 帝企鹅算法 帝企鹅优化(Emperor Penguin Optimizer,EPO)算法是Dhiman G和Kumar V于2018年提出的一种新型群智能算法,该算法具有参数少、收敛精度高等特点。帝企鹅从事各种活动,如狩猎、群体觅食,是群居性动物。每当恶劣的气候来临,它们会挤在一起防风御寒。帝企鹅在南极极端

    2024年02月03日
    浏览(47)
  • 基于Matlab的A*算法实现机器人在栅格地图上的三维路径规划

    基于Matlab的A*算法实现机器人在栅格地图上的三维路径规划 一、引言 路径规划是机器人领域中的一个重要问题,尤其是在三维环境中。A*(A-star)算法是一种常用且高效的路径规划算法,可以帮助机器人在给定的栅格地图上找到最短路径。本文将介绍如何使用Matlab来实现A*算

    2024年02月08日
    浏览(48)
  • A*算法在MATLAB中的机器人栅格地图路径规划

    A*算法在MATLAB中的机器人栅格地图路径规划 路径规划是机器人领域中的重要问题之一,其中A*(A-star)算法是一种常用且有效的路径搜索算法。本文将介绍如何在MATLAB中使用A*算法进行机器人栅格地图的路径规划,并提供相应的源代码。 首先,我们需要了解A 算法的原理。A 算

    2024年02月06日
    浏览(49)
  • 【路径规划】鲸鱼算法栅格地图机器人最短路径规划【含Matlab源码 3613期】

    1 鲸鱼算法 一种元启发式优化算法,模拟座头鲸狩猎行为的元启发式优化算法。目前的工作与其他群优化算法相比的主要区别在于,采用随机或最佳搜索代理来模拟捕猎行为,并使用螺旋来模拟座头鲸的泡泡网攻击机制。该算法具有机制简单、参数少、寻优能力强等优点,在

    2024年02月04日
    浏览(55)
  • 基于灰狼算法的机器人栅格地图路径规划

    基于灰狼算法的机器人栅格地图路径规划 路径规划是机器人领域中一项重要的任务,它涉及在给定的环境中找到机器人从起始点到目标点的最优路径。灰狼算法是一种基于自然界中灰狼群体行为的优化算法,可以用于解决路径规划问题。在本文中,我们将介绍如何使用灰狼算

    2024年02月06日
    浏览(63)
  • 基于粒子群算法的机器人栅格地图路径规划

    基于粒子群算法的机器人栅格地图路径规划 路径规划是机器人导航和自主移动的重要任务之一。在栅格地图中,机器人需要找到一条最优路径以避开障碍物并到达目标位置。粒子群算法(Particle Swarm Optimization,PSO)是一种模拟自然群体行为的优化算法,可以用于解决路径规划

    2024年02月07日
    浏览(45)
  • 【路径规划】自适应遗传算法机器人栅格地图最短路径规划【含Matlab源码 3570期】

    1 遗传算法 遗传算法是一种基于生物进化论模型的优化算法,通过模拟生物进化的过程,通过复制、交叉、突变等操作产生下一代的解,并逐步淘汰掉适应度函数值低的解,增加适应度函数值高的解。遗传算法可以用于解决各种优化问题,如函数优化、组合优化、机器学习等

    2024年02月03日
    浏览(70)
  • 【路径规划】萤火虫算法栅格地图机器人最短路径规划【含Matlab源码 3662期】

    ✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,Matlab项目合作可私信。 🍎个人主页:海神之光 🏆代码获取方式: 海神之光Matlab王者学习之路—代码获取方式 ⛳️座右铭:行百里者,半于九十。 更多Matlab仿真内容点击👇 Matlab图像处理(进阶版) 路径规划

    2024年02月20日
    浏览(95)
  • 基于蚁群算法的机器人栅格地图路径规划

    基于蚁群算法的机器人栅格地图路径规划 蚁群算法(Ant Colony Optimization, ACO)是一种模拟蚂蚁觅食行为的启发式优化算法。它常被应用于求解路径规划问题,其中包括机器人在栅格地图上寻找最佳路径的情景。在本文中,我们将介绍如何使用蚁群算法来实现机器人在栅格地图

    2024年02月07日
    浏览(45)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包