记录使用yolov5进行旋转目标的检测

这篇具有很好参考价值的文章主要介绍了记录使用yolov5进行旋转目标的检测。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

由于实习公司需要使用到旋转目标的检测,所以这几天学习了相关知识,并找了许多资料,饶了许多的弯路。下面记录下项目的整个实现过程。

我参考的是以下几位博主:

DOTAv2遥感图像旋转目标检测竞赛经验分享(Swin Transformer + Anchor free/based方案) - 知乎

小鸡炖技术的个人空间_哔哩哔哩_Bilibili

首先,先为该项目创建一个虚拟环境

VS2015

pytorch 1.6.0(其他版本也可以进行尝试)

torchvision 0.7.0(其他版本也可以进行尝试)

其中这个VS2015,17,19版本都可以,但是pytorch和torchvision必须是要求的版本 ,不然可能会出错 这里试了torch1.8.1和torchvision0.9.1是可以用的。建议安装pytorch和torchvision时采用离线安装包安装,比较稳定。地址,

https://download.pytorch.org/whl/torch_stable.html

接着打开Anaconda prompt创建项目的虚拟环境

conda create -n royolov5 python=3.8
conda activate yolov5

进入创建的虚拟环境之后cd进入下载好pytorch和torchvision的文件夹。然后执行

pip install torch-1.6.0+cu101-cp38-cp38-win_amd64.whl

pip install torchvision-0.7.0+cu101-cp38-cp38-win_amd64.whl

这里注意后缀名.whl不要忘了。

到这里,就将pytorch框架搭好了。

接着,下载我发的压缩包,解压后,同样cd进入YOLOv5_DOTA_OBB-master项目文件的主目录

执行 pip install -r requirements.txt 安装相关的包。

再,添加E:\PytorchPro\YOLOv5_DOTA_OBB-master\swigwin-4.0.2到path里面,这里要进行系统环境的刷新,可以选择重启,也可以进入cmd,输入set path=c 进行刷新

再,在Anaconda prompt中的royolov5环境下cd进入utils分别运行

swig -c++ -python polyiou.i

python setup.py build_ext --inplace

再,将E:\ProgramData\Anaconda3\envs\royolov5\Lib\site-packages\shapely\DLLs所有dll复制到E:\ProgramData\Anaconda3\envs\royolov5\Library\bin

到这一步,训练环境基本准备好了,下面开始准备旋转目标所需的数据集

首先要使用到rolabelimg旋转目标标注工具,具体怎么使用自行百度。下载地址

https://github.com/cgvict/roLabelImg

标注图像后得到的是xml格式,这里需要对数据格式进行转换,符合yolov5的txt格式

首先,运行roxml_to_data.py,转换到Dota的8点数据格式

再将图像数据依次放在以下文件夹

yolov5旋转目标检测,计算机视觉,人工智能,目标检测,旋转目标检测,YOLO

其中images里存放原图像,labelTxt中存放上一步转化的8点格式txt文件(注意要和images中的图像文件对应) 

再,进入DOTA_devkit_YOLO-master,修改DOTA_devkit_YOLO-master\dota_utils.py中的classnames_v1_5,修改为你标注数据的种类

yolov5旋转目标检测,计算机视觉,人工智能,目标检测,旋转目标检测,YOLO

再,分别运行PaddingPIC.py和YOLO_Transform.py

其中,PaddingPIC.py的作用是将图片扩展到高宽相同,便于数据处理。YOLO_Transform.py的作用是将dota的数据格式转换为yolov5的数据格式。

转换后的txt文件会存放再yolo_labels文件夹中

再,将yolov5训练所需的原图像和上一步操作得到的txt文件分别放入DOTA_demo_view文件夹里的images和labels中

yolov5旋转目标检测,计算机视觉,人工智能,目标检测,旋转目标检测,YOLO

 文章来源地址https://www.toymoban.com/news/detail-782027.html

再修改data\DOTA_ROTATED.yaml中nc和names,或者自己写个yaml文件

可以再修改下网络模型的yaml文件,不会的话用官方的yaml文件就行

最后别忘了下载权重文件,这里要注意,因为这个项目是基于v5-3.1版本的,所以,下载的权重文件不能下载最新的pt文件,不然会报错。

最后,开始训练就可以了。

 

给出资源链接:

【超级会员V3】通过百度网盘分享的文件:JLJ.zip
链接:https://pan.baidu.com/s/17zVi6ae6sSs3ab7cUiWhig 
提取码:8e3g
 

 

 

 

 

 

 

到了这里,关于记录使用yolov5进行旋转目标的检测的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【计算机视觉】目标检测—yolov5自定义模型的训练以及加载

    目标检测是计算机视觉主要应用方向之一。目标检测通常包括两方面的工作,首先是招到目标,然后就是识别目标。目标检测可以分为单物体检测和多物体检测。常用的目标检测方法分为两大流派:一步走(one_stage)算法:直接对输入的图像应用算法并输出类别和相应的定位

    2024年02月01日
    浏览(54)
  • Yolov5同时进行目标检测和分割分割

    基于yolov5(v6.0分支)的多任务检测和分割模型。 之前很早就萌生idea在yolov5基础上添加一个分割头用于语义分割,近期正好也有论文YLOLOP是这么做的. 这里基于yolov5最新分支修改,主要改动如下: 1 . 解耦头:实验在小数据集上有一定效果(map 1%+ ),大数据集上提升不明显; 2.

    2024年02月05日
    浏览(40)
  • 如何使用Django 结合WebSocket 进行实时目标检测呢?以yolov5 为例,实现:FPS 25+ (0: 系统简介与架构)

    访问:http://127.0.0.1:8000/ObjectDetection/ObjectDetection1/ 先看下效果:两个摄像头实时展示 之后更新了效果,打算加上检测结果和 FPS ,结果加上FPS 实测了一下,好家伙一秒30-40 帧都行 在我的3060 上,这是python 写的 前后端实时检测你敢信,还两个摄像头机位。

    2023年04月08日
    浏览(43)
  • 学习记录09:快速上手简单改进yolov5目标检测网络

      这篇博客主要是简单介绍一下如何改进yolov5,但是不会讲得太深,因为我也只是运用了几个月,并没有细读每一段代码,我只是为了改而改,不会深究他的代码逻辑,python代码他确实写的很优雅,但是我不打算学习这种优雅,能毕业就行,以后又不从事python工作,也不继

    2023年04月21日
    浏览(47)
  • YOLOv5+BiSeNet——同时进行目标检测和语义分割

    在Gayhub上看到个项目,有人在YOLOv5的基础上,新增了一个分割头,把BiSeNet语义分割算法加入到了目标检测中,使其能够同时进行目标检测和语义分割。 项目地址:https://github.com/TomMao23/multiyolov5 先看我使用原作者提供的模型,复刻出来的效果: (本来想放视频的,不过传了两

    2024年02月07日
    浏览(43)
  • 【问题记录】树莓派+OpenCV+YOLOv5目标检测(Pytorch框架)

     -【学习资料】 子豪兄的零基础树莓派教程 https://github.com/TommyZihao/ZihaoTutorialOfRaspberryPi/blob/master/%E7%AC%AC2%E8%AE%B2%EF%BC%9A%E6%A0%91%E8%8E%93%E6%B4%BE%E6%96%B0%E6%89%8B%E6%97%A0%E7%97%9B%E5%BC%80%E6%9C%BA%E6%8C%87%E5%8D%97.md#%E7%83%A7%E5%BD%95%E9%95%9C%E5%83%8F 第2讲:树莓派新手无痛开机指南【子豪兄的树莓派

    2024年02月02日
    浏览(56)
  • 【计算机视觉面经四】基于深度学习的目标检测算法面试必备(RCNN~YOLOv5)

    目标检测算法主要包括:【两阶段】目标检测算法、【多阶段】目标检测算法、【单阶段】目标检测算法。 什么是两阶段目标检测算法,与单阶段目标检测有什么区别? 两阶段目标检测算法因需要进行两阶段的处理:1)候选区域的获取,2)候选区域分类和回归,也称为基于

    2024年03月27日
    浏览(58)
  • 如何使YOLOv5在检测到目标后进行声音告警提示?

    导师有一个异常行为检测的小任务(吸烟行为检测),给我让我和师弟一起去完成。本身以为在YOLOv5的detect.py检测脚本中加入语音提示很简单,但是其中的过程却是一言难尽。 这也是查阅了很多资料,尝试过了各种大佬分享的经验,集百家之长完成了这个任务,感谢CSDN中各

    2024年01月19日
    浏览(41)
  • c++读取yolov5模型进行目标检测(读取摄像头实时监测)

    文章介绍 本文是篇基于yolov5模型的一个工程,主要是利用c++将yolov5模型进行调用并测试,从而实现目标检测任务 任务过程中主要重点有两个,第一 版本问题,第二配置问题 一,所需软件及版本       训练部分 pytorch==1.13.0  opencv==3.4.1   其他的直接pip即可       c++部署 

    2024年02月07日
    浏览(42)
  • 使用YOLOv5实现实时目标检测结果保存

           本文将分享保存实时目标检测结果的方法,包括将目标信息逐帧保存到.txt文件中、逐帧输出检测结果图片、以及如何保存所有检测图片(包括视野中无目标的帧)。 目录 0.准备 1.目标信息保存 2.检测图片保存 3.保存所有帧        本文以单摄像头实时目标检测进行演

    2024年02月03日
    浏览(47)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包