Faster RCNN训练自己的数据集【傻瓜式教程】

这篇具有很好参考价值的文章主要介绍了Faster RCNN训练自己的数据集【傻瓜式教程】。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

一、下载源码

本文采用的源码是:https://github.com/dBeker/Faster-RCNN-TensorFlow-Python3

二、配置环境

由于本文是小白教程,光写几个环境怕有人配置不好或者配置版本搞乱。Faster RCNN配置环境比较复杂。我在这直接贴图我的环境版本图:
fasterrcnn训练自己的数据集,深度学习,tensorflow,人工智能,python
先安装tensorflow-gpu,然后依次安装cython、opencv-python、easydict、Pillow、matplotlib、scipy,版本的话看我的版本装就行。

三、安装C++编译环境

根据官网给的安装程序会报错:安装visual studio C++ build tools时遇到安装包缺失或损坏的问题。在这直接下载离线包安装,目前很多博主或者资源都要收费,这里免费共享给大家百度网盘链接:

链接:https://pan.baidu.com/s/1ClJQQ_Tfh9OSME489bNBng
提取码:5czp

下载后解压,右键管理员身份运行,如图:
fasterrcnn训练自己的数据集,深度学习,tensorflow,人工智能,python

四、编译环境

首先进入模型文件夹data\coco\PythonAPI下,在这个环境下进入到自己配置的环境中,依次运行以下命令:

python setup.py build_ext --inplace

这里会出现报错:error: command ‘C:\Program Files (x86)\Microsoft Visual Studio 14.0\VC\BIN\x86_amd64\link.exe’ failed with exit status 1158
解决方案:在全局搜索工具中搜索rc.exe,没有工具的自行去下。如图
fasterrcnn训练自己的数据集,深度学习,tensorflow,人工智能,python
然后一定要退出窗口重新进入到自己配置的环境中,不退出继续执行还是会报这个错。然后重新运行以下命令:

python setup.py build_ext --inplace

接着运行

python setup.py build_ext install

然后进入到模型文件夹./lib/utils下,运行以下命令:

python setup.py build_ext --inplace

做完这一步,环境就算大功告成了。

五、制作自己的数据集

在data文件夹下新建VOC2007文件夹,VOC2007文件夹结构如图:
fasterrcnn训练自己的数据集,深度学习,tensorflow,人工智能,python
接下来划分数据集,会在ImageSets/Main下生成4个txt文件,具体看代码:

import os
import random

trainval_percent = 0.2
train_percent = 0.8
xmlfilepath = 'data/VOC2007/Annotations'
txtsavepath = 'data/VOC2007/ImageSets/Main'
total_xml = os.listdir(xmlfilepath)

num = len(total_xml)
list = range(num)
tv = int(num * trainval_percent)
tr = int(tv * train_percent)
trainval = random.sample(list, tv)
train = random.sample(trainval, tr)

ftrainval = open('data/VOC2007/ImageSets/Main/trainval.txt', 'w')
ftest = open('data/VOC2007/ImageSets/Main/test.txt', 'w')
ftrain = open('data/VOC2007/ImageSets/Main/train.txt', 'w')
fval = open('data/VOC2007/ImageSets/Main/val.txt', 'w')

for i in list:
    name = total_xml[i][:-4] + '\n'
    if i in trainval:
        ftrainval.write(name)
        if i in train:
            ftrain.write(name)
        else:
            fval.write(name)
    else:
        ftest.write(name)

ftrainval.close()
ftrain.close()
fval.close()
ftest.close()

这样数据集就算做好了。

六、开始训练

进入自己配置好的环境:

python train.py

运行开始训练。

七、解决报错

1.AttributeError:module tensorflow no attribute app
解决方案:将import tensorflow as tf 改为import tensorflow.compat.v1 as tf
2.AttributeError: ‘version_info’ object has no attribute ‘version’
解决方案:
fasterrcnn训练自己的数据集,深度学习,tensorflow,人工智能,python
找到箭头所指文件,打开将:

class version_info(NamedTuple):
    major: int
    minor: int
    micro: int
    releaselevel: str
    serial: int

    @property
    def __version__(self):
        return "{}.{}.{}".format(self.major, self.minor, self.micro) + (
            "{}{}{}".format(
                "r" if self.releaselevel[0] == "c" else "",
                self.releaselevel[0],
                self.serial,
            ),
            "",
        )[self.releaselevel == "final"]

    def __str__(self):
        return "{} {} / {}".format(__name__, self.__version__, __version_time__)

    def __repr__(self):
        return "{}.{}({})".format(
            __name__,
            type(self).__name__,
            ", ".join("{}={!r}".format(*nv) for nv in zip(self._fields, self)),
        )

替换为:文章来源地址https://www.toymoban.com/news/detail-782265.html

class version_info():
    def __init__(self, major: int, minor: int, micro: int, releaselevel: str, serial: int):
        self.major = major
        self.minor = minor
        self.micro = micro
        self.releaselevel = releaselevel
        self.serial = serial

    @property
    def __version__(self):
        return "{}.{}.{}".format(self.major, self.minor, self.micro) + (
            "{}{}{}".format(
                "r" if self.releaselevel[0] == "c" else "",
                self.releaselevel[0],
                self.serial,
            ),
            "",
        )[self.releaselevel == "final"]

    def __str__(self):
        return "{} {} / {}".format(__name__, self.__version__, __version_time__)

    def __repr__(self):
        return "{}.{}({})".format(
            __name__,
            type(self).__name__,
            ", ".join("{}={!r}".format(*nv) for nv in zip(self._fields, self)),
        )

到了这里,关于Faster RCNN训练自己的数据集【傻瓜式教程】的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【深度学习】计算机视觉(11)——Faster RCNN(下)

    接上一篇。其实没什么东西了,只是因为参考的文章太多太多太多太多太多太多了没办法附在文末,所以我直接新开了一篇。 参考来源: 一文读懂Faster RCNN Cython 的简要入门、编译及使用 【python基础】easydict的安装与使用 TensorFlow2深度学习实战(十六):目标检测算法Faster

    2024年02月01日
    浏览(70)
  • 【深度学习】计算机视觉(12)——Faster RCNN(最终篇)

    接上一篇。其实没什么东西了,只是因为参考的文章太多太多太多太多太多太多了没办法附在文末,所以我直接新开了一篇。 参考来源: 一文读懂Faster RCNN Cython 的简要入门、编译及使用 【python基础】easydict的安装与使用 TensorFlow2深度学习实战(十六):目标检测算法Faster

    2024年02月02日
    浏览(52)
  • 基于Pytorch构建Faster-RCNN网络进行目标检测(二)——预训练模型和预测

    CoCo的全称是Common Objects in Context,是微软团队提供的一个可以用来进行图像识别的数据集,包括检测、分割、关键点估计等任务,目前用的比较多的是Coco2017数据集。 Coco2017数据集是一个包含有大量图像和标注数据的开放数据集,它是微软公司在COCO项目基础上发展而来。这个

    2024年02月09日
    浏览(44)
  • 深度学习目标检测项目实战(六)-基于Faster rcnn pytorch的遥感图像检测

    代码:https://github.com/jwyang/faster-rcnn.pytorch/tree/pytorch-1.0 使用RSOD遥感数据集,VOC的数据格式如下: RSOD是一个开放的目标检测数据集,用于遥感图像中的目标检测。数据集包含飞机,油箱,运动场和立交桥,以PASCAL VOC数据集的格式进行标注。 数据集包括4个文件夹,每个文件夹

    2024年02月06日
    浏览(71)
  • Faster-RCNN环境搭配及运行教程

    最近正在学习Faster-RCNN,环境历经一天时间终于成功安装,借此记录下整体安装过程 本教程是Windows 10 + Python35 + CUDA 10.0 + cudnn 7.4.1.5 + tensorflow-gpu 1.13.2环境的配置过程 所使用的软件包括 名称 版本 CUDA 10.0 CUDNN 7.4.1.5 Anaconda3 4.2.0 Pycharm 2019.3.5 整体过程中所需要的软件包我都放在

    2024年02月04日
    浏览(60)
  • 深度学习:使用UNet做图像语义分割,训练自己制作的数据集,详细教程

    语义分割(Semantic Segmentation)是图像处理和机器视觉一个重要分支。与分类任务不同,语义分割需要判断图像每个像素点的类别,进行精确分割。语义分割目前在自动驾驶、自动抠图、医疗影像等领域有着比较广泛的应用。我总结了使用UNet网络做图像语义分割的方法,教程很详

    2024年02月03日
    浏览(46)
  • 深度学习:使用UNet做图像语义分割,训练自己制作的数据集并推理测试(详细图文教程)

    语义分割(Semantic Segmentation)是图像处理和机器视觉一个重要分支。与分类任务不同,语义分割需要判断图像每个像素点的类别,进行精确分割。语义分割目前在自动驾驶、自动抠图、医疗影像等领域有着比较广泛的应用。我总结了使用UNet网络做图像语义分割的方法,教程很详

    2024年01月18日
    浏览(50)
  • [探地雷达]利用Faster RCNN对B-SCAN探地雷达数据进行目标检测

    引用量较高的一篇会议论文。 由于真实雷达图像较少,作者采用了GPR工具箱,使用不同配置,合成了部分模拟雷达图。然后采用Cifar-10数据(灰度图)对Faster RCNN进行预训练,再采用真实和合成数据进行微调。 论文地址https://arxiv.org/pdf/1803.08414.pdf 探地雷达(GPR)是应用最广泛的

    2024年02月12日
    浏览(51)
  • 目标检测前言,RCNN,Fast RCNN,Faster RCNN

    找到概率最高的目标之后,与其他目标进行IOU交并比计算,若高于一定值,则说明这两张图片预测的是同一个目标,则把概率低的目标删掉 因为是直接得到特征图之后进行映射,所以不限制输入图像尺寸 Gx,Gy是调整中心点,Dx(P)是回归参数,exp就是e的多少次方 从提取到的

    2024年02月07日
    浏览(53)
  • 目标检测——Faster RCNN

    Faster RCNN是由 R-CNN、Fast R-CNN 改进而来,是非常经典的目标检测的两阶段网络。 此篇博客是我通过学习以下优秀博客归纳整理而得: 一文读懂Faster RCNN - 知乎 Faster R-CNN详解和网络模型搭建 - 知乎 Faster R-CNN:详解目标检测的实现过程 - 郭耀华 - 博客园 yolov5与Faster-RCNN 训练过程

    2024年02月06日
    浏览(61)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包