Opencv 基本操作五 各种连通域处理方法

这篇具有很好参考价值的文章主要介绍了Opencv 基本操作五 各种连通域处理方法。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

在深度学习中,尤其是语义分割模型部署的结果后处理中,离不开各类形态学处理方法,其中以连通域处理为主;同时在一些传统的图像处理算法中,也需要一些形态学、连通域处理方法。为此,整理了一些常用的连通域处理函数:查找图像中最大的连通域、删除图像中小面积的连通域、删除图像中的黑色连通域、获取形状的骨架。关于博文代码中连通域处理中的图像D:/Img_data/15.bmp,如下所示,各位如果要运行出一样的效果的话可以用下图进行测试。
opencv 连通域,python、C++与C#实践,opencv,计算机视觉,算法

1、查找图像中最大的连通域

该功能基于connectedComponents函数实现,具体包含4步:
1、通过connectedComponents将每一个连通域的像素用相同的label值标记结果出入Mat labels中
2、然后遍历mat即可找出面积最大的连通域的label值
3、最后遍历Mat labels将像素值不等于最大的连通域的label值的置0即可。

1.1 函数实现

函数命名为findLargesrArea,传入CV_8UC1型的mat,返回结果也为CV_8UC1类型

//找图图中最大的连通域
Mat findLargesrArea(Mat srcImage)
{
    Mat temp;
    Mat labels;
    srcImage.copyTo(temp);

    //1. 标记连通域
    int n_comps = connectedComponents(temp, labels, 4, CV_16U);
    vector<int> histogram_of_labels;
    for (int i = 0; i < n_comps; i++)//初始化labels的个数为0
    {
        histogram_of_labels.push_back(0);
    }

    int rows = labels.rows;
    int cols = labels.cols;
    for (int row = 0; row < rows; row++) //计算每个labels的个数--即连通域的面积
    {
        for (int col = 0; col < cols; col++)
        {
            histogram_of_labels.at(labels.at<unsigned short>(row, col)) += 1;
        }
    }
    histogram_of_labels.at(0) = 0; //将背景的labels个数设置为0

    //2. 计算最大的连通域labels索引
    int maximum = 0;
    int max_idx = 0;
    for (int i = 0; i < n_comps; i++)
    {
        if (histogram_of_labels.at(i) > maximum)
        {
            maximum = histogram_of_labels.at(i);
            max_idx = i;
        }
    }

    //3. 将最大连通域标记为255,并将其他连通域置0
    for (int row = 0; row < rows; row++)
    {
        for (int col = 0; col < cols; col++)
        {
            if (labels.at<unsigned short>(row, col) == max_idx)
            {
                labels.at<unsigned short>(row, col) = 255;
            }
            else
            {
                labels.at<unsigned short>(row, col) = 0;
            }
        }
    }

    //4. 将图像更改为CV_8U格式
    labels.convertTo(labels, CV_8U);
    return labels;
}

1.2 调用效果

测试调用代码如下所示,im2既为找到的最大连通域结果图

void main() {
    string path = "D:/Img_data/15.bmp";
    Mat im1 = imread(path, 0);
    resize(im1, im1, {512,512});
    im1 = 255 - im1;
    imshow("im1", im1);
    Mat im2=findLargesrArea(im1);
    imshow("im2", im2);
    waitKey();
}

调用结果如下所示:
opencv 连通域,python、C++与C#实践,opencv,计算机视觉,算法

1.3 找topk个连通域

再出图片中topk个连通域的方法实现如下

static bool mypairsort(pair<int, int> i, pair<int, int> j) { return (i.second > j.second); }
//找图中topk个连通域
static Mat findTopKArea(Mat srcImage,int topk)
{
    Mat temp;
    Mat labels;
    srcImage.copyTo(temp);

    //1. 标记连通域
    int n_comps = connectedComponents(temp, labels, 4, CV_16U);
    vector<pair<int,int>> histogram_of_labels;
    for (int i = 0; i < n_comps; i++)//初始化labels的个数为0
    {
        histogram_of_labels.push_back({ i,0 });
    }

    int rows = labels.rows;
    int cols = labels.cols;
    for (int row = 0; row < rows; row++) //计算每个labels的个数--即连通域的面积
    {
        for (int col = 0; col < cols; col++)
        {
            histogram_of_labels.at(labels.at<unsigned short>(row, col)).second += 1;
        }
    }
    //histogram_of_labels.at(0).second = 0; //将背景的labels个数设置为0

    //2.对连通域进行排序
    std::sort(histogram_of_labels.begin(), histogram_of_labels.end(), mypairsort);
    //3. 取前k个连通域的labels id
    vector<int> select_labels ;
    for (int i = 0; i < topk; i++)
    {
        if (histogram_of_labels[i].first == 0) {
            topk += 1;
            //如果碰到背景,则跳过,且topk+1
        }
        else {
            select_labels.push_back(histogram_of_labels[i].first);
        }
    }

    //3. 将label id在select_labels的连通域标记为255,并将其他连通域置0
    for (int row = 0; row < rows; row++)
    {
        for (int col = 0; col < cols; col++)
        {
            int now_label_id = labels.at<unsigned short>(row, col);
            if (std::count(select_labels.begin(), select_labels.end(), now_label_id)) {
                labels.at<unsigned short>(row, col) = 255;
            }
            else {
                labels.at<unsigned short>(row, col) = 0;
            }
        }
    }

    //4. 将图像更改为CV_8U格式
    labels.convertTo(labels, CV_8U);
    return labels;
}

2、删除小面积的连通域

该功能基于connectedComponentsWithStats函数实现,具体包含4步:
1、通过connectedComponentsWithStats将每一个连通域的像素用相同的label值标记,标记结果存为Mat labels,并将每一个连通域的面积存入Mat stats中
2、为每一个连通域设置一个颜色转换表vector colors,将连通域面积小于阈值的连通域颜色转换值为黑色
3、建立一个Mat img_color,遍历Mat labels按照其像素值从vector colors中取值设置Mat img_color的值
4、将Mat img_color进行二值化

2.1 函数实现

删除小面积的连通域可以使用connectedComponents函数,这里改用connectedComponentsWithStats函数实现,相比于connectedComponents函数需要自行计算连通域面积,connectedComponentsWithStats函数的参数stats已经将连通域面积带出来了

//删除小面积的连通域
Mat deleteMinWhiteArea(Mat src,int min_area) {
    Mat labels, stats, centroids, img_color, grayImg;
    //1、连通域信息统计
    int nccomps = connectedComponentsWithStats(
        src, //二值图像
        labels,
        stats,
        centroids
    );

    //2、连通域状态区分
    //为每一个连通域初始化颜色表
    vector<Vec3b> colors(nccomps);
    colors[0] = Vec3b(0, 0, 0); // background pixels remain black.
    for (int i = 1; i < nccomps; i++)
    {
        colors[i] = Vec3b(rand() % 256, rand() % 256, rand() % 256);
        //面积阈值筛选
        if ((stats.at<int>(i, CC_STAT_AREA) < min_area))
        {
            //如果连通域面积不合格则置黑
            colors[i] = Vec3b(0, 0, 0);
        }
    }
    //3、连通域删除
    //按照label值,对不同的连通域进行着色
    img_color = Mat::zeros(src.size(), CV_8UC3);
    for (int y = 0; y < img_color.rows; y++)
    {
        int* labels_p = labels.ptr<int>(y);//使用行指针,加速运算
        Vec3b* img_color_p = img_color.ptr<Vec3b>(y);//使用行指针,加速运算
        for (int x = 0; x < img_color.cols; x++)
        {
            int label = labels_p[x];//取出label值
            CV_Assert(0 <= label && label <= nccomps);
            img_color_p[x] = colors[label];//设置颜色
        }
    }
    //return img_color;
    //如果是需要二值结果则将img_color进行二值化
    cvtColor(img_color, grayImg, COLOR_BGR2GRAY);
    threshold(grayImg, grayImg, 1, 255, THRESH_BINARY);
    return grayImg;
}

2.2 调用效果

调用deleteMinWhiteArea函数需要传入mat对象和面积阈值,函数会将小于面积阈值的连通域置黑。

void main() {
    string path = "D:/Img_data/15.bmp";
    Mat im1 = imread(path, 0);
    resize(im1, im1, {512,512});
    //im1 = 255 - im1;
    imshow("im1", im1);
    Mat im2= deleteMinWhiteArea(im1,100);
    imshow("im2", im2);
    waitKey();
}

opencv 连通域,python、C++与C#实践,opencv,计算机视觉,算法

3、删除小面积的黑色孔洞

删除图像中的删除小面积的黑色孔洞也可以理解为删除图像中黑色的小面积连通域,有了删除白色小面积连通域函数,删除黑色孔洞代码异常简单。

3.1 函数实现

deleteMinBlackArea函数通过调用deleteMinWhiteArea函数实现,先将图像的颜色翻转(将白边黑,黑变白),然后删除小面积的白色连通域,最后再翻转回颜色即可

//删除图形中小面积的黑色孔洞
Mat deleteMinBlackArea(Mat src, int min_area) {
    Mat inv = 255 - src;//颜色取反
    Mat res = deleteMinWhiteArea(inv, min_area);
    return 255-res;//颜色取反
}

3.2 调用效果

调用代码如下所示,左图为原图,右图为删除小面积黑色孔洞的效果图

void main() {
    string path = "D:/Img_data/15.bmp";
    Mat im1 = imread(path, 0);
    resize(im1, im1, {512,512});
    im1 = 255 - im1;
    imshow("im1", im1);
    Mat im2= deleteMinBlackArea(im1,100);
    imshow("im2", im2);
    waitKey();
}

opencv 连通域,python、C++与C#实践,opencv,计算机视觉,算法

4、获取形状的骨架

提取形状的骨架在python中可以由skimage库中morphology.skeletonize()函数实现,但是查找整个c++opencv库也没有实现,为此对提取骨架算法进行分析,最终实现该函数。

4.1 函数实现

核心思想,采用十字架结构的kernel对形状不断进行腐蚀,每一次腐蚀后再进行开运算,将腐蚀结果与开运算结果作差,作差结构既为骨架部分,直到将整个图像腐蚀为全黑为止。
通过以上步骤可知:
1、被腐蚀掉的区域非骨架区域
2、开运算可以腐蚀掉图形的骨架区域

因此将开运算与腐蚀不断作差迭代运行,使图形越来越细,即可得到骨架。

//获取脊线
Mat get_ridge_line(Mat dst,int ksize=3) {
    Mat skeleton, result, open_dst;
    Mat kernel = getStructuringElement(MORPH_CROSS, Size(ksize, ksize));
    skeleton = Mat::zeros(dst.rows, dst.cols, dst.type());
    while (true) {
        if (sum(dst)[0] == 0) {
            break;
        }
        morphologyEx(dst, dst, MORPH_ERODE, kernel);//消除毛刺,删除部分连通域
        morphologyEx(dst, open_dst, MORPH_OPEN, kernel);
        result = dst - open_dst;
        skeleton = skeleton + result;
    }
    return skeleton;
}

4.2 调用效果

通过get_ridge_line函数获取轮廓骨架需要传入两个参数: mat和ksize,通过以下效果可以看出,ksize越大提取的骨架越粗。

void main() {
    string path = "D:/Img_data/a1.png";
    Mat im1 = imread(path, 0);
    resize(im1, im1, {512,512});
    imshow("im1", im1);
    Mat im2= get_ridge_line(im1,3);
    imshow("im2", im2);
    Mat im3 = get_ridge_line(im1, 7);
    imshow("im3", im3);
    waitKey();
}

opencv 连通域,python、C++与C#实践,opencv,计算机视觉,算法文章来源地址https://www.toymoban.com/news/detail-782313.html

到了这里,关于Opencv 基本操作五 各种连通域处理方法的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • OpenCV基本图像处理操作(十)——图像特征harris角点

    角点 角点是图像中的一个特征点,指的是两条边缘交叉的点,这样的点在图像中通常表示一个显著的几角。在计算机视觉和图像处理中,角点是重要的特征,因为它们通常是图像中信息丰富的区域,可以用于图像分析、对象识别、3D建模等多种应用。 角点的识别可以帮助在进

    2024年04月23日
    浏览(58)
  • Python 基于 OpenCV 视觉图像处理实战 之 图像相关的基本概念,以及图像的基础操作 一

    目录 Python 基于 OpenCV 视觉图像处理实战 之 图像相关的基本概念,以及图像的基础操作 一 一、简单介绍 二、图像相关的一些基本概念 1、像素 2、图像的构成 3、图像的格式 4、图像的位深和通道 三、OpenCV 的一些基本图像处理函数介绍 1、读取一幅画图像 2、显示图像 3、输出

    2024年04月11日
    浏览(118)
  • 【Linux从入门到精通】vim的基本使用各种操作详解

       文章目录 一、vim编辑器简单介绍 二、vim编辑器的四种模式 2、1 正常/普通/命令模式(Normal mode) 2、2 插入模式(Insert mode) 2、3 末行模式(last line mode) 三、命令模式的相关操作实例 3、1 光标的相关操作 3、2 文本操作 四、插入模式下的相关操作 五、末行模式下的相关操作 🙋

    2024年02月04日
    浏览(39)
  • OpenCV基本操作——算数操作

    两个图像应该具有相同的大小和类型,或者第二个图像可以是标量值 注意:OpenCV加法和Numpy加法之间存在差异。OpenCV的加法是饱和操作,而Numpy添加的是模运算 ((414, 500, 3), (429, 499, 3)) (429, 499, 3) 其实也是加法,只是权重不同

    2024年02月13日
    浏览(46)
  • 【Python_Opencv图像处理框架】图像基本操作+90bb5729-b33a-4e82-a0d9-faa3e5cbf621

    很幸运能选择Python语言进行学习,这是有关Opencv的图像处理的第一篇文章,讲解了有关图像处理的一些基础操作,作为初学者,我尽己所能,但仍会存在疏漏的地方,希望各位看官不吝指正❤️ 1. 计算机眼中的图像 计算机眼中的图像由一个个像素组成, 每个像素点的值在

    2023年04月18日
    浏览(38)
  • OpenCV基本操作——图像的基础操作

    注:opencv图像坐标系中,左上角是原点,y轴向下,x轴向右,单位像素点 有时需要在B,G,R通道图像上单独工作。在这种情况下,需要将BGR图像分割成单个通道。或者在其他情况下,可能需要将这些单独的通道合并到BGR图像 opencv中有150多种颜色空间转换方法。最广泛使用的转

    2024年02月13日
    浏览(90)
  • Opencv基本操作 (上)

    目录 图像基本操作 阈值与平滑处理 图像阈值 图像平滑处理 图像形态学操作 图像梯度计算 Sobel 算子 Canny 边缘检测 图像金字塔与轮廓检测   图像轮廓 接口定义  轮廓绘制 轮廓特征与相似 模板匹配  傅里叶变换 傅里叶变换的作用 滤波 图像基本操作 读取图像: 使用cv2.i

    2024年03月18日
    浏览(44)
  • 【笔记】OpenCV图像基本操作

    目录 一、图像属性 1.1图像格式 1.2图像尺寸 1.3图像分辨率和通道 1.4图像直方图 1.5图像颜色空间 二、基本操作 2.1 图像读取 cv2.imread() 2.2 图像的显示 cv2.imshow() 2.3 图像的保存 cv2.imwrite() 2.4 用matplotlib显示图像 plt.imshow() 2.5 视频读取 cv2.VideoCapture() 2.6 图像截取、颜色通道提取

    2024年02月03日
    浏览(408)
  • Opencv+Python图像基本操作

    目录 图像的读取、显示和保存 获取图像属性  图像截取  绘图功能 画线 画矩形 画圆圈 画椭圆          画多边形 向图像添加文本 cv2.imread() ,  cv2.imshow() ,  cv2.imwrite()分别表示读取图片,显示图片,写入图片   retval = cv2.imread(文件名 [,显示控制参数]) cv2.IMREAD_UNCHANGED:不改

    2024年02月04日
    浏览(50)
  • OpenCV-opencv下载安装和基本操作

    本实验目的是学习如何使用opencv库来读取文件并显示图象,学习opencv中的基本事件——窗口事件,鼠标事件、键盘事件以及滑动条事件,同时熟悉OpenCV库的函数和方法,为进一步学习和应用计算机视觉和图像处理提供基础。 1、opencv的安装 2、opencv的基本操作 - 图像输入输出模

    2024年02月03日
    浏览(49)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包