【电路设计】尖峰电压与浪涌电流

这篇具有很好参考价值的文章主要介绍了【电路设计】尖峰电压与浪涌电流。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

一、尖峰电压 Spike Voltage

电压尖峰的特点是持续数十微妙及高达几百伏的电压,由雷击或负载阶跃的感应耦合产生,属于浪涌电压里的一种。电机、电容器和功率转换设备(如变速驱动器)是产生尖峰电压的主要因素。

通俗的说,就是在系统电压不稳,或者突然来电的时候,由于电子原件的电感、电容等原件的作用,会导致在系统中产生比正常工作的电压高许多甚至几倍十几倍的瞬间高电压,这个高电压的最高值就尖峰电压。

尖峰电压,集成电路设计,fpga开发,集成学习
电压尖峰是电感续流引起的:
引起电压尖峰的电感可能是:变压器漏感、线路分布电感、器件等效模型中的感性成分等;
引起电压尖峰的电流可能是:拓扑电流、二极管反向恢复电流、不恰当的谐振电流等。

减小电压尖峰

减少电压尖峰的主要措施有:
(1)减少可能引起电压尖峰的电感,比如漏感、布线电感等;
(2)减少可能引起电压尖峰的电流,比如二极管反向恢复电流等;
(3)将上述电感能量转移到别处。

采取上述措施后电压尖峰仍然不能接受,才考虑吸收电路。吸收是不得已的技术措施。

尖峰吸收缓冲电路

简单的缓冲电路是对冲击尖峰电流而言,电流尖峰的成因如下:
(1)二极管(包括体二极管)反向恢复电流;
(2)电容的充放电电流。这些电容可能是:电路分布电容、变压器绕组等效分布电容、设计不恰当的吸收电容、设计不恰当的谐振电容、器件的等效模型中的电容成分等。

缓冲的基本方法:在冲击电流尖峰的路径上串入某种类型的电感,常见于BUCK电路中。

注:由于缓冲电感的串入会显著增加吸收的工作量,因此缓冲电路一般需要与吸收电路配合使用;缓冲电路延缓了导通电流冲击,可实现某种程度的软开通(ZIS)。
尖峰电压,集成电路设计,fpga开发,集成学习
尖峰电压吸收电路主要有三种设计方案:
(1)利用齐纳二极管和超快恢复二极管(SRD)组成齐纳钳位电路;
(2)利用阻容元件和超快恢复二极管组成的R、C、SRD软钳位电路;
(3)由阻容元件构成RC缓冲吸收电路。
尖峰电压,集成电路设计,fpga开发,集成学习

在开关电源电路中,通常经过稳压器7805后,在大的电解电容旁边加一个小的瓷片电容,小的电容滤除高的 dV/dt 尖峰电压
尖峰电压,集成电路设计,fpga开发,集成学习

二、浪涌电流 Surge Current

电路在遭雷击和在接通、断开电感负载或大型负载时常常会产生很高的操作过电压,这种瞬时过电压(或过电流)称为浪涌电压(或浪涌电流),是一种瞬变干扰。上文提到过,尖峰电压也是浪涌电压的一种。

在通常意义上,浪涌电流指电源接通瞬间,流入电源设备的峰值电流。由于输入滤波电容迅速充电,所以该峰值电流远远大于稳态输入电流。

尖峰电压,集成电路设计,fpga开发,集成学习

浪涌导致的危害主要包括:
(1) 存储器内数据丢失
(2) I/O接口电路复位,导致控制过程中断
(3) 线路板上的器件损坏
(4) 预置的校准值漂移
(5) 程序跑飞、系统死锁
(6) 变频器、直流电机驱动器等的输入整流模块故障
(7) 控制器发出错误指令,导致系统误动作

浪涌保护器

浪涌保护器(Surge Protection Device, SPD)是用来限制瞬态过电压及泄放相应瞬态过电流,保护电子电气设备安全的装置,又可称为电涌保护器(或防雷器、防雷保安器、避雷器等)。它至少应含有一个非线性元件。浪涌保护器实际上也是一种等电位连接器。

线性浪涌抑制器 IC

LT4363 高压浪涌抑制器:
尖峰电压,集成电路设计,fpga开发,集成学习
在正常操作情况下,一个外部 N 沟道 MOSFET 被驱动至全通,并充当一个具非常小电压降的传输器件。如果输出电压上升至高于由 FB 引脚上的电阻分压器设定的稳压值,MOSFET 就调节 OUT 引脚上的电压,从而使负载电路能够在瞬态事件发生期间继续运行。

SNS 和 OUT 引脚之间的可选电阻器用来控制过流事件,电流限制环路控制 MOSFET 上的栅极电压,以将电阻器两端的检测电压限制到 50mV。

无论过压还是过流事件都会启动一个电流源给连至 TMR 引脚的电容器充电。充电电流与输入至输出电压差有关,以使定时器周期随着日益严重的故障而缩短,从而确保 MOSFET 保持在其安全工作区之内。文章来源地址https://www.toymoban.com/news/detail-782497.html


参考链接

  1. 尖峰电压
  2. 百度百科-浪涌电压
  3. 保护电压浪涌、尖峰和纹波的措施
  4. 开关电源的吸收缓冲电路

到了这里,关于【电路设计】尖峰电压与浪涌电流的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 集成电路CAD课程实验报告:二输入与非门电路设计、版图设计与仿真

    一、实验目的: 1、掌握Cadence Virtuoso快捷键技巧,学会使用Cadence进行原理图设计、版图设计、原理图仿真。 实验使用AMI 0.6u C5N工艺,了解NCSU Cadence设计套件(NCSU_Analog_Parts库)的使用。 实现二输入与非门电路设计、版图设计与仿真。 实验步骤: 在库管理器中添加一个库,为

    2024年02月04日
    浏览(76)
  • PCB硬件设计之网口 网口浪涌防护电路-Bob Smith电路

    器件选型: (1)集成网口 其内部原理:  (2)分离网口设计: 变压器+RJ45的方案。量大的话果真可以省成本呀。   电路设计: 参考:网络变压器的原理、主要参数及实现的功能_林臻皓的博客-CSDN博客_网络变压器 网口变压器电路:   这里引申出来一个问题: 1、中间抽头

    2024年02月07日
    浏览(54)
  • 数字集成电路设计(六、Verilog HDL高级程序设计举例)

    在我们的数电,集成电路设计里面,一定是层次化设计的 在一个手机芯片的一个部分,写的硬件描述语言的层次都能达到20几层,对于这样的设计,我i们就能想到采用底层的设计,中间层的设计和顶层的设计。对于小规模电路,极小规模电路,通常想的是先有模块然后去搭一

    2024年04月16日
    浏览(62)
  • 集成电路CAD设计:CMOS 环形振荡器设计与仿真

    一、目的: 1、掌握Cadence Virtuoso快捷键技巧,学会使用Cadence进行原理图设计、版图设计、原理图仿真。 2、实验使用AMI 0.6u C5N工艺,了解NCSU Cadence设计套件(NCSU_Analog_Parts库)的使用,学会使用自行设计的反相器设计环形振荡器。 3、实现CMOS 环形振荡器的设计与仿真。  二、

    2023年04月14日
    浏览(53)
  • 【模拟CMOS集成电路设计】带隙基准(Bandgap)设计与仿真

      此次设计,未使用运放,使用电流镜结构为基础的Bandgap来满足设计指标,主要目标是在结构简单的前提下满足设计指标要求。   本次设计指标,如表1所示   ( 线性调节率 指输出基准电压随直流VDD的变化率,电源电压从电路正常工作的最小电压起到额定电源电压为止

    2024年02月13日
    浏览(63)
  • 模拟CMOS集成电路设计入门学习(3)

    共源极 (1)采用电阻负载的共源极 电路的大信号和小信号的特性我们都需要研究。{电路的 输入阻抗 在 低频 时非常高} ①从0开始增大, 截止 ,; ②接近时,开始 导通 ,电流流经使减小; ③进一步增大,也变大但还小于时,NMOS管仍处于 饱和区 ,直到 即=时( 预夹断 )

    2024年02月07日
    浏览(59)
  • 【模拟CMOS集成电路设计】学习笔记(一)

      持续更新,若有后续更新,更新链接将附于文末,后续有时间会对内容更新。   放大器放大的是小信号,只有在特定的静态工作点下,小信号放大才有意义,因此一些小信号指标常与某个DC点相关联,若小信号幅度超过系统输入范围要求,则将会发生线性失真,合适的

    2024年02月10日
    浏览(55)
  • 模拟CMOS集成电路设计入门学习(6)

    共源共栅结构(Cascode) 回顾: 共源级 中晶体管可以将电压信号转换为电流信号; 共栅级 的输入信号可以是电流。 将共源级和共栅级进行级联:  :输入器件;:共源共栅器件; {流经和的电流相等} (1)分析共源共栅结构的偏置条件   ① 为了保证工作在饱和区 ,必须满

    2024年02月09日
    浏览(72)
  • 数字集成电路设计(四、Verilog HDL数字逻辑设计方法)(二)

    所有的是时序逻辑电路都可以拆成组合逻辑电路+存储 (关于组合逻辑电路的理解可以参考我数电的博客https://blog.csdn.net/y_u_yu_yu_/article/details/127592466) 可以分成两个部分,组合逻辑电路和存储电路。组合逻辑电路的输入一个是x信号一个是当前的状态,这两个信号决定了组合

    2024年02月06日
    浏览(55)
  • 数字集成电路后端(Innovus)开发设计

    一、本文目的是对数字IC进行: 1、平面规划设计(Floorplanning the Design); 2、电源路径设计( Routing Power with Special Route); 3、使用Early Global Router分析路径(布线)可行性(Analyzing Route Feasibility with the Early Global Router)。 二、设计过程与结果: 1、平面规划设计(Floorplanning

    2024年02月05日
    浏览(117)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包