计算机视觉之家看到快速圆检测Edge Drawing,其效果比霍夫要好,速度更快(具体效果可以参考视觉之家的文章),上面C++代码不全,那么好的检测效果国内资料竟然那么少,后在opencv的开发文档中找到了C++代码,在此分享学习交流。
实战 | OpenCV中更稳更快的找圆方法--EdgeDrawing使用演示(详细步骤 + 代码)_opencv 找圆_计算机视觉之家的博客-CSDN博客
OpenCV: EdgeDrawing文章来源:https://www.toymoban.com/news/detail-782730.html
OpenCV: fld_lines.cpp文章来源地址https://www.toymoban.com/news/detail-782730.html
#include <iostream>
#include "opencv2/imgproc.hpp"
#include "opencv2/ximgproc.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/highgui.hpp"
using namespace std;
using namespace cv;
using namespace cv::ximgproc;
int main(int argc, char** argv)
{
string in;
CommandLineParser parser(argc, argv, "{@input|corridor.jpg|input image}{help h||show help message}");
if (parser.has("help"))
{
parser.printMessage();
return 0;
}
in = samples::findFile(parser.get<string>("@input"));
Mat image = imread(in, IMREAD_GRAYSCALE);
if( image.empty() )
{
return -1;
}
// Create FLD detector
// Param Default value Description
// length_threshold 10 - Segments shorter than this will be discarded
// distance_threshold 1.41421356 - A point placed from a hypothesis line
// segment farther than this will be
// regarded as an outlier
// canny_th1 50 - First threshold for
// hysteresis procedure in Canny()
// canny_th2 50 - Second threshold for
// hysteresis procedure in Canny()
// canny_aperture_size 3 - Aperturesize for the sobel operator in Canny().
// If zero, Canny() is not applied and the input
// image is taken as an edge image.
// do_merge false - If true, incremental merging of segments
// will be performed
int length_threshold = 10;
float distance_threshold = 1.41421356f;
double canny_th1 = 50.0;
double canny_th2 = 50.0;
int canny_aperture_size = 3;
bool do_merge = false;
Ptr<FastLineDetector> fld = createFastLineDetector(length_threshold,
distance_threshold, canny_th1, canny_th2, canny_aperture_size,
do_merge);
vector<Vec4f> lines;
// Because of some CPU's power strategy, it seems that the first running of
// an algorithm takes much longer. So here we run the algorithm 10 times
// to see the algorithm's processing time with sufficiently warmed-up
// CPU performance.
for (int run_count = 0; run_count < 5; run_count++) {
double freq = getTickFrequency();
lines.clear();
int64 start = getTickCount();
// Detect the lines with FLD
fld->detect(image, lines);
double duration_ms = double(getTickCount() - start) * 1000 / freq;
cout << "Elapsed time for FLD " << duration_ms << " ms." << endl;
}
// Show found lines with FLD
Mat line_image_fld(image);
fld->drawSegments(line_image_fld, lines);
imshow("FLD result", line_image_fld);
waitKey(1);
Ptr<EdgeDrawing> ed = createEdgeDrawing();
ed->params.EdgeDetectionOperator = EdgeDrawing::SOBEL;
ed->params.GradientThresholdValue = 38;
ed->params.AnchorThresholdValue = 8;
vector<Vec6d> ellipses;
for (int run_count = 0; run_count < 5; run_count++) {
double freq = getTickFrequency();
lines.clear();
int64 start = getTickCount();
// Detect edges
//you should call this before detectLines() and detectEllipses()
ed->detectEdges(image);
// Detect lines
ed->detectLines(lines);
double duration_ms = double(getTickCount() - start) * 1000 / freq;
cout << "Elapsed time for EdgeDrawing detectLines " << duration_ms << " ms." << endl;
start = getTickCount();
// Detect circles and ellipses
ed->detectEllipses(ellipses);
duration_ms = double(getTickCount() - start) * 1000 / freq;
cout << "Elapsed time for EdgeDrawing detectEllipses " << duration_ms << " ms." << endl;
}
Mat edge_image_ed = Mat::zeros(image.size(), CV_8UC3);
vector<vector<Point> > segments = ed->getSegments();
for (size_t i = 0; i < segments.size(); i++)
{
const Point* pts = &segments[i][0];
int n = (int)segments[i].size();
polylines(edge_image_ed, &pts, &n, 1, false, Scalar((rand() & 255), (rand() & 255), (rand() & 255)), 1);
}
imshow("EdgeDrawing detected edges", edge_image_ed);
Mat line_image_ed(image);
fld->drawSegments(line_image_ed, lines);
// Draw circles and ellipses
for (size_t i = 0; i < ellipses.size(); i++)
{
Point center((int)ellipses[i][0], (int)ellipses[i][1]);
Size axes((int)ellipses[i][2] + (int)ellipses[i][3], (int)ellipses[i][2] + (int)ellipses[i][4]);
double angle(ellipses[i][5]);
Scalar color = ellipses[i][2] == 0 ? Scalar(255, 255, 0) : Scalar(0, 255, 0);
ellipse(line_image_ed, center, axes, angle, 0, 360, color, 2, LINE_AA);
}
imshow("EdgeDrawing result", line_image_ed);
waitKey();
return 0;
}
到了这里,关于OpenCV中更稳更快的边缘检测方法,快速查找线、圆、椭圆--EdgeDrawing-C++代码的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!