Matlab实现Kmeans聚类算法

这篇具有很好参考价值的文章主要介绍了Matlab实现Kmeans聚类算法。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1.Kmeans聚类算法简介

kmeans聚类算法是一种迭代求解的聚类分析算法。其实现步骤如下:

(1) 随机选取K个对象作为初始的聚类中心

(2) 计算每个对象与各个种子聚类中心之间的距离,把每个对象分配给距离它最近的聚类中心。

(3) 聚类中心以及分配给它们的对象就代表一个聚类。每分配一个样本,聚类的聚类中心会根据聚类中现有的对象被重新计算。

(4) 重复步骤(2)、(3),直到满足某个终止条件。终止条件可以是聚类中心再发生变化或者误差平方和局部最小等。

2.Kmeans聚类算法的代码实现

(1) 首先,加载需要进行分类的数据集。

data(:,1)=[90,35,52,83,64,24,49,92,99,45,19,38,1,71,56,97,63,...
    32,3,34,33,55,75,84,53,15,88,66,41,51,39,78,67,65,25,40,77,...
    13,69,29,14,54,87,47,44,58,8,68,81,31];
data(:,2)=[33,71,62,34,49,48,46,69,56,59,28,14,55,41,39,...
    78,23,99,68,30,87,85,43,88,2,47,50,77,22,76,94,11,80,...
    51,6,7,72,36,90,96,44,61,70,60,75,74,63,40,81,4];
figure(1)
scatter(data(:,1),data(:,2),'LineWidth',2)
title("原始数据散点图")

原始数据绘制散点图如下所示:

kmeans聚类算法matlab,matlab学习指南,matlab,算法,Powered by 金山文档

(2) 设置分类数量并调用自己编写的kmeans聚类函数

cluster_num=4;
[index_cluster,cluster] = kmeans_func(data,cluster_num);
function [index_cluster,cluster] = kmeans_func(data,cluster_num)
%% 原理推导Kmeans聚类算法
[m,n]=size(data);
cluster=data(randperm(m,cluster_num),:);%从m个点中随机选择cluster_num个点作为初始聚类中心点
epoch_max=1000;%最大次数
therad_lim=0.001;%中心变化阈值
epoch_num=0;
while(epoch_num<epoch_max)
    epoch_num=epoch_num+1;
    % distance1存储每个点到各聚类中心的欧氏距离
    for i=1:cluster_num
        distance=(data-repmat(cluster(i,:),m,1)).^2;
        distance1(:,i)=sqrt(sum(distance'));
    end
    [~,index_cluster]=min(distance1');%index_cluster取值范围1~cluster_num
    % cluster_new存储新的聚类中心
    for j=1:cluster_num
        cluster_new(j,:)=mean(data(find(index_cluster==j),:));
    end
    %如果新的聚类中心和上一轮的聚类中心距离和大于therad_lim,更新聚类中心,否则算法结束
    if (sqrt(sum((cluster_new-cluster).^2))>therad_lim)
        cluster=cluster_new;
    else
        break;
    end
end
end

(3) 对分类结果和最终的聚类中心进行可视化展示

%% 画出聚类效果
figure(2)
% subplot(2,1,1)
a=unique(index_cluster); %找出分类出的个数
C=cell(1,length(a));
for i=1:length(a)
   C(1,i)={find(index_cluster==a(i))};
end
for j=1:cluster_num
    data_get=data(C{1,j},:);
    scatter(data_get(:,1),data_get(:,2),100,'filled','MarkerFaceAlpha',.6,'MarkerEdgeAlpha',.9);
    hold on
end
%绘制聚类中心
plot(cluster(:,1),cluster(:,2),'ks','LineWidth',2);
hold on
sc_t=mean(silhouette(data,index_cluster'));
title_str=['原理推导K均值聚类','  聚类数为:',num2str(cluster_num),'  SC轮廓系数:',num2str(sc_t)];
title(title_str)
kmeans聚类算法matlab,matlab学习指南,matlab,算法,Powered by 金山文档

3.完整实现代码

clc;clear;close all;
data(:,1)=[90,35,52,83,64,24,49,92,99,45,19,38,1,71,56,97,63,...
    32,3,34,33,55,75,84,53,15,88,66,41,51,39,78,67,65,25,40,77,...
    13,69,29,14,54,87,47,44,58,8,68,81,31];
data(:,2)=[33,71,62,34,49,48,46,69,56,59,28,14,55,41,39,...
    78,23,99,68,30,87,85,43,88,2,47,50,77,22,76,94,11,80,...
    51,6,7,72,36,90,96,44,61,70,60,75,74,63,40,81,4];
figure(1)
scatter(data(:,1),data(:,2),'LineWidth',2)
title("原始数据散点图")
cluster_num=4;
[index_cluster,cluster] = kmeans_func(data,cluster_num);
%% 画出聚类效果
figure(2)
% subplot(2,1,1)
a=unique(index_cluster); %找出分类出的个数
C=cell(1,length(a));
for i=1:length(a)
   C(1,i)={find(index_cluster==a(i))};
end
for j=1:cluster_num
    data_get=data(C{1,j},:);
    scatter(data_get(:,1),data_get(:,2),100,'filled','MarkerFaceAlpha',.6,'MarkerEdgeAlpha',.9);
    hold on
end
%绘制聚类中心
plot(cluster(:,1),cluster(:,2),'ks','LineWidth',2);
hold on
sc_t=mean(silhouette(data,index_cluster'));
title_str=['原理推导K均值聚类','  聚类数为:',num2str(cluster_num),'  SC轮廓系数:',num2str(sc_t)];
title(title_str)

4. 总结

以上就是matlab实现kmeans聚类算法的全部代码,可在上述代码的基础上进行数据集替换,应用于其它场景。如果有不懂的小伙伴儿,欢迎评论留言或者私信,代码订制也可私信博主。文章来源地址https://www.toymoban.com/news/detail-782794.html

到了这里,关于Matlab实现Kmeans聚类算法的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Python——Kmeans聚类算法、轮廓系数(算法理论、代码)

    目录 1 Kmeans模型理论 1.1 K-均值算法(K-means)算法概述 1.2 距离度量 1.3 K-means算法流程 1.4 K值的选择 1.5 K-means的优点 1.6 K-means的缺点 1.7 聚类的评价指标 2 代码解释 3 实操  3.1 构建聚类数目为3的KMeans模型 3.2 占比饼图 3.3 轮廓系数值 3.4 使用for循环计算聚类个数为2至9时的轮廓

    2024年02月01日
    浏览(53)
  • 机器学习:基于Kmeans聚类算法对银行客户进行分类

    作者:i阿极 作者简介:Python领域新星作者、多项比赛获奖者:博主个人首页 😊😊😊如果觉得文章不错或能帮助到你学习,可以点赞👍收藏📁评论📒+关注哦!👍👍👍 📜📜📜如果有小伙伴需要数据集和学习交流,文章下方有交流学习区!一起学习进步!💪 大家好,我

    2024年02月05日
    浏览(56)
  • 聚类算法(KMeans)模型评估方法(SSE、SC)及案例

    一、概述         将相似的样本自动归到一个类别中,不同的相似度计算方法,会得到不同的聚类结果,常用欧式距离法;聚类算法的目的是在没有先验知识的情况下,自动发现数据集中的内在结构和模式。是 无监督学习 算法 二、分类 根据聚类 颗粒度 :细聚类、粗聚

    2024年01月20日
    浏览(42)
  • 基于TF-IDF+KMeans聚类算法构建中文文本分类模型(附案例实战)

      🤵‍♂️ 个人主页:@艾派森的个人主页 ✍🏻作者简介:Python学习者 🐋 希望大家多多支持,我们一起进步!😄 如果文章对你有帮助的话, 欢迎评论 💬点赞👍🏻 收藏 📂加关注+ 目录 1.TF-IDF算法介绍 2.TF-IDF算法步骤 3.KMeans聚类  4.项目实战 4.1加载数据 4.2中文分词 4.

    2024年02月03日
    浏览(66)
  • 聚类-kmeans

    聚类算法是无监督学习算法,指定将数据分成k个簇。然后通过每个点到各个簇的中心的欧氏距离来分类。 kmeans本身会陷入局部最小值的状况,二分kmeans可以解决这一点。 二分kmeans是遍历所有的簇,将其分成2个,比较哪一个分裂结果更好,用距离和来代表误差 例如现在只有

    2024年02月09日
    浏览(40)
  • 聚类 kmeans | 机器学习

    是一种无监督学习算法,其主要目的是 将数据点分为k个簇 ,距离近的样本具有更高的相似度,距离近的划分为一个簇,一共划分k个簇,**让簇内距离小,簇间距离大。**距离是样本点到之心的距离。所有样本点到质心距离之和最小,就认为样本越相似。 聚类和分类区别 优化

    2023年04月09日
    浏览(39)
  • Kmeans聚类分析

    该算法可以将数据划分为指定的k个簇,并且簇的中心点由各簇样本均值计算所得 该聚类算法的思路非常通俗易懂,就是不断地计算各样本点与簇中心之间的距离,直到收敛为止,其具体的步骤如下: (1)从数据中随机挑选k个样本点作为原始的簇中心。 (2)计算剩余样本与

    2023年04月25日
    浏览(47)
  • Kmeans聚类时K值选择的方法

    (1)简单介绍 聚类属于非监督学习,K均值聚类是最基础常用的聚类算法。它的基本思想是,通过迭代寻找K个簇(Cluster)的一种划分方案,使得聚类结果对应的损失函数最小。其中,损失函数可以定义为各个样本距离所属簇中心点的误差平方和: 其中 代表第 个样本, 是

    2024年02月05日
    浏览(39)
  • 【MATLAB第58期】基于MATLAB的PCA-Kmeans、PCA-LVQ与BP神经网络分类预测模型对比

    基于UCI葡萄酒数据集进行葡萄酒分类及产地预测 共包含178组样本数据,来源于三个葡萄酒产地,每组数据包含产地标签及13种化学元素含量,即已知类别标签。 把样本集随机分为训练集和测试集(70%训练,30%测试),根据已有数据集训练一个能进行葡萄酒产地预测的模型,以

    2024年02月16日
    浏览(40)
  • KMeans+DBSCAN密度聚类+层次聚类的使用(附案例实战)

    🤵‍♂️ 个人主页:@艾派森的个人主页 ✍🏻作者简介:Python学习者 🐋 希望大家多多支持,我们一起进步!😄 如果文章对你有帮助的话, 欢迎评论 💬点赞👍🏻 收藏 📂加关注+ 目录 1.KMeans聚类算法 2.DBSCAN密度聚类算法 3.层次聚类 4.实战案例 4.1数据集介绍 4.2加载数据

    2024年02月08日
    浏览(44)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包