云原生向量数据库Milvus

这篇具有很好参考价值的文章主要介绍了云原生向量数据库Milvus。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

什么是 Milvus

Milvus 是一款云原生向量数据库,它具备高可用、高性能、易拓展的特点,用于海量向量数据的实时召回。

Milvus 基于 FAISS、Annoy、HNSW 等向量搜索库构建,核心是解决稠密向量相似度检索的问题。在向量检索库的基础上,Milvus 支持数据分区分片、数据持久化、增量数据摄取、标量向量混合查询、time travel 等功能,同时大幅优化了向量检索的性能,可满足任何向量检索场景的应用需求。通常,建议用户使用 Kubernetes 部署 Milvus,以获得最佳可用性和弹性。

Milvus 采用共享存储架构,存储计算完全分离,计算节点支持横向扩展。从架构上来看,Milvus 遵循数据流和控制流分离,整体分为了四个层次,分别为接入层(access layer)、协调服务(coordinator service)、执行节点(worker node)和存储层(storage)。各个层次相互独立,独立扩展和容灾。
云原生向量数据库Milvus,云原生,数据库,milvus

为什么需要 Milvus

随着互联网不断发展,电子邮件、论文、物联网传感数据、社交媒体照片、蛋白质分子结构等非结构化数据已经变得越来越普遍。如果想要使用计算机来处理这些数据,需要使用 embedding 技术将这些数据转化为向量。随后,Milvus 会存储这些向量,并为其建立索引。Milvus 能够根据两个向量之间的距离来分析他们的相关性。如果两个向量十分相似,这说明向量所代表的源数据也十分相似。

Milvus 向量数据库专为向量查询与检索设计,能够为万亿级向量数据建立索引。

与现有的主要用作处理结构化数据的关系型数据库不同,Milvus 在底层设计上就是为了处理由各种非结构化数据转换而来的 Embedding 向量而生。

为什么选择使用 Milvus

  • 高性能:性能高超,可对海量数据集进行向量相似度检索。
  • 高可用、高可靠:Milvus 支持在云上扩展,其容灾能力能够保证服务高可用。
  • 混合查询:Milvus 支持在向量相似度检索过程中进行标量字段过滤,实现混合查询。
  • 开发者友好:支持多语言、多工具的 Milvus 生态系统。

Milvus基本概念

非结构化数据

非结构化数据指的是数据结构不规则,没有统一的预定义数据模型,不方便用数据库二维逻辑表来表现的数据。

非结构化数据包括图片、视频、音频、自然语言等,占所有数据总量的 80%。

非结构化数据的处理可以通过各种人工智能(AI)或机器学习(ML)模型转化为向量数据后进行处理。

特征向量

向量又称为 embedding vector,是指由 embedding 技术从离散变量(如图片、视频、音频、自然语言等各种非结构化数据)转变而来的连续向量。

在数学表示上,向量是一个由浮点数或者二值型数据组成的 n 维数组。

通过现代的向量转化技术,比如各种人工智能(AI)或者机器学习(ML)模型,可以将非结构化数据抽象为 n 维特征向量空间的向量。这样就可以采用最近邻算法(ANN)计算非结构化数据之间的相似度。

向量相似度检索

相似度检索是指将目标对象与数据库中数据进行比对,并召回最相似的结果。同理,向量相似度检索返回的是最相似的向量数据。

近似最近邻搜索(ANN)算法能够计算向量之间的距离,从而提升向量相似度检索的速度。如果两条向量十分相似,这就意味着他们所代表的源数据也十分相似。

Collection-集合

包含一组 entity,可以等价于关系型数据库系统(RDBMS)中的表。

Entity-实体

包含一组 field。field 与实际对象相对应。field 可以是代表对象属性的结构化数据,也可以是代表对象特征的向量。primary key 是用于指代一个 entity 的唯一值。

注意: 你可以自定义 primary key,否则 Milvus 将会自动生成 primary key。请注意,目前 Milvus 不支持 primary key 去重,因此有可能在一个 collection 内出现 primary key 相同的 entity。

Field-字段

Entity 的组成部分。Field 可以是结构化数据,例如数字和字符串,也可以是向量。

注意: Milvus 2.0 现已支持标量字段过滤。并且,Milvus 2.0在一个集合中只支持一个主键字段。

Milvus与关系型数据库的对应关系如下:
云原生向量数据库Milvus,云原生,数据库,milvus

Partition-分区

分区是集合(Collection)的一个分区。Milvus 支持将收集数据划分为物理存储上的多个部分。这个过程称为分区,每个分区可以包含多个段。

Segment-段

Milvus 在数据插入时,通过合并数据自动创建的数据文件。一个 collection 可以包含多个 segment。一个 segment 可以包含多个 entity。在搜索中,Milvus 会搜索每个 segment,并返回合并后的结果。

Sharding-分片

Shard 是指将数据写入操作分散到不同节点上,使 Milvus 能充分利用集群的并行计算能力进行写入。默认情况下,单个 Collection 包含 2 个分片(Shard)。目前 Milvus 采用基于主键哈希的分片方式,未来将支持随机分片、自定义分片等更加灵活的分片方式。

注意: 分区的意义在于通过划定分区减少数据读取,而分片的意义在于多台机器上并行写入操作。

索引

索引基于原始数据构建,可以提高对 collection 数据搜索的速度。Milvus 支持多种索引类型。为提高查询性能,你可以为每个向量字段指定一种索引类型。目前,一个向量字段仅支持一种索引类型。切换索引类型时,Milvus 自动删除之前的索引。

相似性搜索引擎的工作原理是将输入的对象与数据库中的对象进行比较,找出与输入最相似的对象。索引是有效组织数据的过程,极大地加速了对大型数据集的查询,在相似性搜索的实现中起着重要作用。对一个大规模向量数据集创建索引后,查询可以被路由到最有可能包含与输入查询相似的向量的集群或数据子集。在实践中,这意味着要牺牲一定程度的准确性来加快对真正的大规模向量数据集的查询。

PChannel

PChannel 表示物理通道。每个 PChannel 对应一个日志存储主题。默认情况下,将分配一组 256 个 PChannels 来存储记录 Milvus 集群启动时数据插入、删除和更新的日志。

VChannel

VChannel 表示逻辑通道(虚拟通道)。每个集合将分配一组 VChannels,用于记录数据的插入、删除和更新。VChannels 在逻辑上是分开的,但在物理上共享资源。

Binlog

binlog 是一个二进制日志,或者是一个更小的段单位,记录和处理 Milvus 向量数据库中数据的更新和更改。 一个段的数据保存在多个二进制日志中。 Milvus 中的 binlog 分为三种:InsertBinlog、DeleteBinlog 和 DDLBinlog。

日志代理(Log broker)

日志代理是一个支持回放的发布订阅系统。它负责流数据持久化、可靠异步查询的执行、事件通知和查询结果的返回。当工作节点从系统崩溃中恢复时,它还确保增量数据的完整性。

日志订阅者

日志订阅方通过订阅日志序列来更新本地数据,并以只读副本的形式提供服务。

日志序列(Log sequence)

日志序列记录了在 Milvus 中更改集合状态的所有操作。

正则化

正则化是指转换嵌入(向量)以使其范数等于 1 的过程。 如果使用内积 (IP) 来计算embeddings相似度,则必须对所有embeddings进行正则化。 正则化后,内积等于余弦相似度。

Milvus 系统架构

Milvus 2.0 是一款云原生向量数据库,采用存储与计算分离的架构设计,所有组件均为无状态组件,极大地增强了系统弹性和灵活性。
云原生向量数据库Milvus,云原生,数据库,milvus
整个系统分为四个层次:

  • 接入层(Access Layer):系统的门面,由一组无状态 proxy 组成。对外提供用户连接的
    endpoint,负责验证客户端请求并合并返回结果。
  • 协调服务(Coordinator Service):系统的大脑,负责分配任务给执行节点。协调服务共有四种角色,分别为 root
    coord、data coord、query coord 和 index coord。
  • 执行节点(Worker Node):系统的四肢,负责完成协调服务下发的指令和 proxy
    发起的数据操作语言(DML)命令。执行节点分为三种角色,分别为 data node、query node 和 index node。
  • 存储服务 (Storage): 系统的骨骼,负责 Milvus 数据的持久化,分为元数据存储(meta store)、消息存储(log
    broker)和对象存储(object storage)三个部分。

各个层次相互独立,独立扩展和容灾。

接入层

接入层由一组无状态 proxy 组成,是整个系统的门面,对外提供用户连接的 endpoint。接入层负责验证客户端请求并减少返回结果。

  • Proxy 本身是无状态的,一般通过负载均衡组件(Nginx、Kubernetes
    Ingress、NodePort、LVS)对外提供统一的访问地址并提供服务。
  • 由于 Milvus 采用大规模并行处理(MPP)架构,proxy 会先对执行节点返回的中间结果进行全局聚合和后处理后,再返回至客户端。
协调服务

协调服务是系统的大脑,负责向执行节点分配任务。它承担的任务包括集群拓扑节点管理、负载均衡、时间戳生成、数据声明和数据管理等。

协调服务共有四种角色:

  • Root coordinator(root coord):负责处理数据定义语言(DDL)和数据控制语言(DCL)请求。比如,创建或删除collection、partition、index 等,同时负责维护中心授时服务 TSO 和时间窗口的推进。
  • Query coordinator (query coord):负责管理 query node 的拓扑结构和负载均衡以及从 growingsegment 移交切换到 sealed segment。Query node 中的 segment 只存在两种状态:growing 和sealed,分别对应增量数据和历史数据。
  • Data coordinator (data coord):负责管理 data node 的拓扑结构,维护数据的元信息以及触发flush、compact 等后台数据操作。
  • Index coordinator (index coord):负责管理 index node 的拓扑结构,构建索引和维护索引元信息。
执行节点

执行节点是系统的四肢,负责完成协调服务下发的指令和 proxy 发起的数据操作语言(DML)命令。

由于采取了存储计算分离,执行节点是无状态的,可以配合 Kubernetes 快速实现扩缩容和故障恢复。

执行节点分为三种角色:

  • Query node: Query node 通过订阅消息存储(log broker)获取增量日志数据并转化为 growingsegment,基于对象存储加载历史数据,提供标量+向量的混合查询和搜索功能。
  • Data node: Data node通过订阅消息存储获取增量日志数据,处理更改请求,并将日志数据打包存储在对象存储上实现日志快照持久化。
  • Index node: Index node 负责执行索引构建任务。Index node不需要常驻于内存,可以通过 serverless的模式实现。
存储服务

存储服务是系统的骨骼,负责 Milvus 数据的持久化,分为元数据存储(meta store)、消息存储(log broker)和对象存储(object storage)三个部分。

元数据存储

负责存储元信息的快照,比如:集合 schema 信息、节点状态信息、消息消费的 checkpoint 等。元信息存储需要极高的可用性、强一致和事务支持,因此,etcd 是这个场景下的不二选择。除此之外,etcd 还承担了服务注册和健康检查的职责。

对象存储

负责存储日志的快照文件、标量/向量索引文件以及查询的中间处理结果。Milvus 采用 MinIO 作为对象存储,另外也支持部署于 AWS S3 和Azure Blob 这两大最广泛使用的低成本存储。但是,由于对象存储访问延迟较高,且需要按照查询计费,因此 Milvus 未来计划支持基于内存或 SSD 的缓存池,通过冷热分离的方式提升性能以降低成本。

消息存储

消息存储是一套支持回放的发布订阅系统,用于持久化流式写入的数据,以及可靠的异步执行查询、事件通知和结果返回。执行节点宕机恢复时,通过回放消息存储保证增量数据的完整性。

目前,分布式版Milvus依赖 Pulsar 作为消息存储,单机版Milvus依赖 RocksDB 作为消息存储。消息存储也可以替换为 Kafka、Pravega 等流式存储。

整个 Milvus 围绕日志为核心来设计,遵循日志即数据的准则,因此在 2.0 版本中没有维护物理上的表,而是通过日志持久化和日志快照来保证数据的可靠性。
云原生向量数据库Milvus,云原生,数据库,milvus
日志系统作为系统的主干,承担了数据持久化和解耦的作用。通过日志的发布订阅机制,Milvus 将系统的读、写组件解耦。一个极致简化的模型如上图所示,整个系统主要由两个角色构成,分别是消息存储(log broker)(负责维护”日志序列“)与“日志订阅者”。其中的“日志序列”记录了所有改变库表状态的操作,“日志订阅者”通过订阅日志序列更新本地数据,以只读副本的方式提供服务。 发布订阅机制还为系统在变更数据捕获(CDC)和全面的分布式部署方面的可扩展性提供了空间。

Milvus 主要的组件

Milvus 支持两种部署模式,单机模式(standalone)和分布式模式(cluster)。两种模式具备完全相同的能力,用户可以根据数据规模、访问量等因素选择适合自己的模式。Standalone 模式部署的 Milvus 暂时不支持在线升级为 cluster 模式。

单机版 Milvus

单机版 Milvus 包括三个组件:

  • Milvus 负责提供系统的核心功能。
  • etcd 是元数据引擎,用于管理 Milvus 内部组件的元数据访问和存储,例如:proxy、index node 等。
  • MinIO 是存储引擎,负责维护 Milvus 的数据持久化。

云原生向量数据库Milvus,云原生,数据库,milvus

分布式版 Milvus

分布式版 Milvus 由八个微服务组件和三个第三方依赖组成,每个微服务组件可使用 Kubernetes 独立部署。

微服务组件

  • Root coord
  • Proxy
  • Query coord
  • Query node
  • Index coord
  • Index node
  • Data coord
  • Data node

第三方依赖

  • etcd 负责存储集群中各组件的元数据信息。
  • MinIO 负责处理集群中大型文件的数据持久化,如索引文件和全二进制日志文件。
  • Pulsar 负责管理近期更改操作的日志,输出流式日志及提供日志订阅服务。

云原生向量数据库Milvus,云原生,数据库,milvus

Milvus 应用场景

你可以使用 Milvus 搭建符合自己场景需求的向量相似度检索系统。Milvus 的使用场景如下所示:文章来源地址https://www.toymoban.com/news/detail-782947.html

  • 图片检索系统:以图搜图,从海量数据库中即时返回与上传图片最相似的图片。
  • 视频检索系统:将视频关键帧转化为向量并插入 Milvus,便可检索相似视频,或进行实时视频推荐。
  • 音频检索系统:快速检索海量演讲、音乐、音效等音频数据,并返回相似音频。
  • 分子式检索系统:超高速检索相似化学分子结构、超结构、子结构。
  • 推荐系统:根据用户行为及需求推荐相关信息或商品。
  • 智能问答机器人:交互式智能问答机器人可自动为用户答疑解惑。
  • DNA 序列分类系统:通过对比相似 DNA 序列,仅需几毫秒便可精确对基因进行分类。
  • 文本搜索引擎:帮助用户从文本数据库中通过关键词搜索所需信息。

到了这里,关于云原生向量数据库Milvus的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 向量数据库~milvus

    本文主要基于milvus官方的材料外加自己的一些理解整理而来,欢迎交流 云原生:存算分离; 读写分离; 增量存量分离; 微服务架构,极致弹性; 日志即数据:通过message queue解耦生产者、消费着,降低系统复杂度; 提升index、data、query模块弹性; 流批一体:表和日志二象性;流式

    2024年02月03日
    浏览(49)
  • 向量数据库:Milvus

            Milvus由Go(63.4%),Python(17.0%),C++(16.6%),Shell(1.3%)等语言开发开发,支持python,go,java接口(C++,Rust,c#等语言还在开发中),支持单机、集群部署,支持CPU、GPU运算。Milvus 中的所有搜索和查询操作都在内存中执行。,当前支持的Dimensions of a vector的最大值为32,768。其他限制。

    2024年01月23日
    浏览(57)
  • 《向量数据库指南》——宏观解读向量数据库Milvus Cloud

    宏观解读向量数据库 如今,强大的机器学习模型配合 Milvus 等向量数据库的模式已经为电子商务、推荐系统、语义检索、计算机安全、制药等领域和应用场景带来变革。而对于用户而言,除了足够多的应用场景,向量数据库还需要具备更多重要的特性,包括: 可灵活扩展、支

    2024年02月07日
    浏览(49)
  • 《向量数据库》——向量数据库Milvus Cloud 和Dify比较

    Zilliz Cloud v.s. Dify Dify 作为开源的 LLMs App 技术栈,在此前已支持丰富多元的大型语言模型的接入,除了 OpenAI、Anthropic、Azure OpenAI、Hugging face、Replicate 等全球顶尖模型及模型托管平台,也完成了国内主流的各大模型支持(如文心一言、智谱 AI 等)。 而 Zilliz Cloud  和 Milvus 则是

    2024年02月08日
    浏览(62)
  • docker 安装向量数据库 Milvus

    官网为 www.milvus.io/ Milvus 向量数据库能够帮助用户轻松应对海量非结构化数据(图片 / 视频 / 语音 / 文本)检索。单节点 Milvus 可以在秒内完成十亿级的向量搜索(请参考:在线教程),分布式架构亦能满足用户的水平扩展需求。 Milvus 向量数据库的应用场景包括:互联网娱乐

    2024年02月13日
    浏览(89)
  • 向量数据库Annoy和Milvus

    Annoy 和 Milvus 都是用于向量索引和相似度搜索的开源库,它们可以高效地处理大规模的向量数据。 Annoy(Approximate Nearest Neighbors Oh Yeah): Annoy 是一种近似最近邻搜索算法,它通过构建一个树状结构来加速最近邻搜索。 Annoy 支持支持欧氏距离,曼哈顿距离,余弦距离,汉明距

    2024年02月09日
    浏览(41)
  • 《向量数据库指南》——开源框架NVIDIA Merlin & 向量数据库Milvus

    推荐系统 pipeline 中至关重要的一环便是为用户检索并找到最相关的商品。为了实现这一目标,通常会使用低维向量(embedding)表示商品,使用数据库存储及索引数据,最终对数据库中数据进行近似最近邻(ANN)搜索。这些向量表示是通过深度学习模型获取的,而这些深度学习

    2024年02月05日
    浏览(58)
  • 使用docker搭建Milvus向量数据库

    官网是这样说的: Milvus创建于2019年,目标单一:存储、索引和管理由深度神经网络和其他机器学习(ML)模型生成的大量嵌入向量。 作为一个专门用于处理输入向量查询的数据库,它能够对万亿规模的向量进行索引。与现有的关系数据库不同,Milvus主要按照预定义的模式处

    2024年02月09日
    浏览(46)
  • Docker Compose安装milvus向量数据库单机版-milvus基本操作

    以管理员身份运行powershell Ubuntu 22.04 LTS可以不装,wsl必须更新。。。 如果 操作超时 ,可以试试开代理。 重启电脑。。。 设置用户名、密码 https://hub.docker.com/ 重启电脑。。。 power shell输入以下命令,下载yaml文件到指定目录,并重命名为docker-compose.yml 或者 点击一下链接直接

    2024年01月19日
    浏览(63)
  • milvus: 专为向量查询与检索设计的向量数据库

    milvus docs milvus release Milvus的目标是:store, index, and manage massive embedding vectors generated by deep neural networks and other machine learning (ML) models. Milvus 向量数据库专为向量查询与检索设计,能够为万亿级向量数据建立索引。 与现有的关系数据库主要按照预定义的模式处理结构化数据不同,

    2024年02月15日
    浏览(42)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包