基于BP神经网络的定位算法,基于BP神经网络定位预测

这篇具有很好参考价值的文章主要介绍了基于BP神经网络的定位算法,基于BP神经网络定位预测。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

目录

摘要
BP神经网络参数设置及各种函数选择
参数设置
训练函数
传递函数
学习函数
性能函数
显示函数
前向网络创建函数
BP神经网络训练窗口详解
训练窗口例样
训练窗口四部详解
基于BP神经网络的定位算法,基于BP神经网络定位预测
代码下载:基于BP神经网络的定位算法,基于BP神经网络定位预测(代码完整)资源-CSDN文库 https://download.csdn.net/download/abc991835105/88731150
效果图
结果分析

摘要

本文总结BP神经网络的参数设置,训练函数,传递函数,学习函数,画图函数,性能函数,创建函数,详解nntraintool训练窗口,基于基于BP神经网络的定位算法,基于BP神经网络定位预测,实现BP神经网络的编程

BP神经网络参数设置及各种函数选择

参数设置

1,最大迭代次数net.trainParam.epochs,一般先设置大,然后看训练收敛情况,如果提前收敛,最大迭代次数就改小,以到达训练目标为目的设置。
2,学习率net.trainParam.lr,一般设置0.01–0.5,数据越多,数据噪声越大,数据越难拟合,数值一般需要越小,设置太大,容易过早停止收敛。
3,学习目标net.trainParam.goal,根据训练测试的情况进行文章来源地址https://www.toymoban.com/news/detail-782969.html

到了这里,关于基于BP神经网络的定位算法,基于BP神经网络定位预测的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【SSA-BP预测】基于麻雀算法优化BP神经网络回归预测研究(Matlab代码实现)

     💥💥💞💞 欢迎来到本博客 ❤️❤️💥💥 🏆博主优势: 🌞🌞🌞 博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️ 座右铭: 行百里者,半于九十。 📋📋📋 本文目录如下: 🎁🎁🎁 目录 💥1 概述 📚2 运行结果 🎉3 参考文献 🌈4 Matlab代码实现 麻雀算

    2024年02月08日
    浏览(60)
  • 基于龙格-库塔算法优化的BP神经网络(预测应用) - 附代码

    摘要:本文主要介绍如何用龙格-库塔算法优化BP神经网络并应用于预测。 本案例数据一共2000组,其中1900组用于训练,100组用于测试。数据的输入为2维数据,预测的输出为1维数据 2.1 BP神经网络参数设置 神经网络参数如下: 2.2 龙格-库塔算法应用 龙格-库塔算法原理请参考:

    2024年02月11日
    浏览(44)
  • 基于材料生成算法优化的BP神经网络(预测应用) - 附代码

    摘要:本文主要介绍如何用材料生成算法优化BP神经网络并应用于预测。 本案例数据一共2000组,其中1900组用于训练,100组用于测试。数据的输入为2维数据,预测的输出为1维数据 2.1 BP神经网络参数设置 神经网络参数如下: 2.2 材料生成算法应用 材料生成算法原理请参考:

    2024年02月10日
    浏览(48)
  • 基于堆优化算法优化的BP神经网络(预测应用) - 附代码

    摘要:本文主要介绍如何用堆优化算法优化BP神经网络并应用于预测。 本案例数据一共2000组,其中1900组用于训练,100组用于测试。数据的输入为2维数据,预测的输出为1维数据 2.1 BP神经网络参数设置 神经网络参数如下: 2.2 堆优化算法应用 堆优化算法原理请参考:https://b

    2024年02月11日
    浏览(39)
  • 基于人工兔算法优化的BP神经网络(预测应用) - 附代码

    摘要:本文主要介绍如何用人工兔算法优化BP神经网络并应用于预测。 本案例数据一共2000组,其中1900组用于训练,100组用于测试。数据的输入为2维数据,预测的输出为1维数据 2.1 BP神经网络参数设置 神经网络参数如下: 2.2 人工兔算法应用 人工兔算法原理请参考:https://b

    2024年02月10日
    浏览(46)
  • 基于未来搜索算法优化的BP神经网络(预测应用) - 附代码

    摘要:本文主要介绍如何用未来搜索算法优化BP神经网络并应用于预测。 本案例数据一共2000组,其中1900组用于训练,100组用于测试。数据的输入为2维数据,预测的输出为1维数据 2.1 BP神经网络参数设置 神经网络参数如下: 2.2 未来搜索算法应用 未来搜索算法原理请参考:

    2024年02月11日
    浏览(38)
  • 基于白冠鸡算法优化的BP神经网络(预测应用) - 附代码

    摘要:本文主要介绍如何用白冠鸡算法优化BP神经网络并应用于预测。 本案例数据一共2000组,其中1900组用于训练,100组用于测试。数据的输入为2维数据,预测的输出为1维数据 2.1 BP神经网络参数设置 神经网络参数如下: 2.2 白冠鸡算法应用 白冠鸡算法原理请参考:https://b

    2024年02月11日
    浏览(33)
  • 基于变色龙算法优化的BP神经网络(预测应用) - 附代码

    摘要:本文主要介绍如何用变色龙算法优化BP神经网络并应用于预测。 本案例数据一共2000组,其中1900组用于训练,100组用于测试。数据的输入为2维数据,预测的输出为1维数据 2.1 BP神经网络参数设置 神经网络参数如下: 2.2 变色龙算法应用 变色龙算法原理请参考:https://b

    2024年02月11日
    浏览(45)
  • 基于蜜獾算法优化的BP神经网络(预测应用) - 附代码

    摘要:本文主要介绍如何用蜜獾算法优化BP神经网络并应用于预测。 本案例数据一共2000组,其中1900组用于训练,100组用于测试。数据的输入为2维数据,预测的输出为1维数据 2.1 BP神经网络参数设置 神经网络参数如下: 2.2 蜜獾算法应用 蜜獾算法原理请参考:https://blog.csdn.

    2024年02月10日
    浏览(39)
  • 基于闪电连接过程算法优化的BP神经网络(预测应用) - 附代码

    摘要:本文主要介绍如何用闪电连接过程算法优化BP神经网络并应用于预测。 本案例数据一共2000组,其中1900组用于训练,100组用于测试。数据的输入为2维数据,预测的输出为1维数据 2.1 BP神经网络参数设置 神经网络参数如下: 2.2 闪电连接过程算法应用 闪电连接过程算法原

    2024年02月11日
    浏览(41)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包