数据结构第十二弹---堆的应用

这篇具有很好参考价值的文章主要介绍了数据结构第十二弹---堆的应用。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1、堆排序

要学习堆排序,首先要学习堆的向下调整算法,因为要用堆排序,你首先得建堆,而建堆需要执行多次堆的向下调整算法。
但是,使用向下调整算法需要满足一个前提:
 若想将其调整为小堆,那么根结点的左右子树必须都为小堆。
 若想将其调整为大堆,那么根结点的左右子树必须都为大堆。

数据结构第十二弹---堆的应用,数据结构,算法,c语言

向下调整算法的基本思想(大堆):
 1.从根结点处开始,选出左右孩子中值较大的孩子。
 2.让大的孩子与其父亲进行比较。  若大的孩子比父亲还大,则该孩子与其父亲的位置进行交换。并将原来大的孩子的位置当成父亲继续向下进行调整,直到调整到叶子结点为止。
 若大的孩子比父亲小,则不需处理了,调整完成,整个树已经是大堆了。

数据结构第十二弹---堆的应用,数据结构,算法,c语言
使用堆的向下调整算法需要满足其根结点的左右子树均为大堆或是小堆才行,那么如何才能将一个任意树调整为堆呢?

答案很简单,我们只需要从倒数第一个非叶子结点开始,从后往前,按下标,依次作为根去向下调整即可。

数据结构第十二弹---堆的应用,数据结构,算法,c语言
建堆代码

//建堆
	for (int i = (n - 1 - 1) / 2; i >= 0; i--)
	{
		AdjustDown(php->a, php->size, i);
	}

根据上一弹堆的向下调整算法时间复杂度计算可知,建堆的时间复杂度为O(N)。
那么堆建好后,如何进行堆排序呢?
步骤如下:

1、将堆顶数据与堆的最后一个数据交换,然后对根位置进行一次堆的向下调整,但是调整时被交换到最后的那个最大的数不参与向下调整。
2、完成步骤1后,这棵树除最后一个数之外,其余数又成一个大堆,然后又将堆顶数据与堆的最后一个数据交换,这样一来,第二大的数就被放到了倒数第二个位置上,然后该数又不参与堆的向下调整…反复执行下去,直到堆中只有一个数据时便结束。此时该序列就是一个升序。

为什么升序用到的是大堆呢?

大堆的堆顶是最大的数,可以将其放在数组尾,然后再通过向下调整算法找到次大的数。而小堆的堆顶是最小的数,需要放在第一个位置,如果用原来的堆找不到次小的数,而重新建堆则会更加繁琐。

堆排序实现

//升序 大堆
void HeapSort(int arr[], int size)
{
	assert(arr);
	//1.建堆 向上调整 O(N*logN)
	//for (int i = 1; i < size; i++)
	//{
	//	AdjustUp(arr, i);
	//}
	
	//1.向下调整建堆 O(N)
	//从第一个非叶子结点开始向下调整,一直到根
	for (int i = (size - 1 - 1) / 2; i >= 0; i--)
	{
		AdjustDown(arr, size, i);
	}
	//2.向下调整 O(N*logN)
	int end = size - 1;//记录堆的最后一个数据的下标
	while (end > 0)
	{
		Swap(&arr[0], &arr[end]);//将堆顶的数据和堆的最后一个数据交换
		AdjustDown(arr, end, 0);//对根进行一次向下调整
		end--;//堆的最后一个数据的下标减一
	}
}

2、TopK问题

TOP-K问题:即求数据结合中前K个最大的元素或者最小的元素,一般情况下数据量都比较大。
比如:专业前10名、世界500强、富豪榜、游戏中前100的活跃玩家等。
对于Top-K问题,能想到的最简单直接的方式就是排序,但是:如果数据量非常大,排序就不太可取了(可能
数据都不能一下子全部加载到内存中)。最佳的方式就是用堆来解决,基本思路如下:

1. 用数据集合中前K个元素来建堆

前k个最大的元素,则建小堆
前k个最小的元素,则建大堆

2. 用剩余的N-K个元素依次与堆顶元素来比较,不满足则替换堆顶元素

将剩余N-K个元素依次与堆顶元素比完之后,堆中剩余的K个元素就是所求的前K个最小或者最大的元素。

假设我们要找出10亿个随机数中的前k个最大的数。
假设数据类型为int,那么占用的内存是多少?
1GB=1024MB
1MB=1024Kb
1KB=1024Byte
10亿个数则是10亿字节,40亿Byte=3,906,250KB=3,814.697MB=3.725GB
因为内存的空间是有限的,所以在处理这么大内存的数据时,我们需要用到文件处理。

为了让速度较快一些,我们就假设在一千万个随机数中求前K个数。

1、我们需要创建一个有一万个数的文件。

此处我们需要用到两个文件处理函数和文件打开关闭函数。

//文件打开
FILE * fopen ( const char * filename, const char * mode );//前面参数为文件名 后面参数为文件打开方式
//文件关闭
int fclose ( FILE * stream );
int fprintf ( FILE * stream, const char * format, ... );//将后面函数写入的信息写入stream
int fscanf ( FILE * stream, const char * format, ... );//将stream的信息写入后面的函数

创建随机值,需要用到srand(),但是随机数的范围为0-32767。最多只有32768个,远小于一千万,为了减少随机输的重复,我们需要将随机数加上一个数。单纯的使用srand不是真正的随机时,这些我们需要用到时间这个参数,使它为真正的随机数。srand的头文件是#include<stdlib.h>。time的头文件是#include<time.h>。

srand((unsigned int)time(NULL));

代码实现

//1.创造随机数到文件中
void CreateNDate()
{
	int n = 10000000;
	srand((unsigned int)time(NULL));
	FILE* pf = fopen("data.txt", "w");//以写的方式打开文件
	if (pf == NULL)
	{
		perror("fopen fail");
		return;
	}
	for (int i = 0; i < n; i++)
	{
		//rand随机数有限制 只有几万个 所以+i
		int x = (rand() + i) % 10000000;
		fprintf(pf, "%d\n", x);//将数据写入文件中
	}
	fclose(pf);//关闭文件
	pf = NULL;//手动置空
}

测试
数据结构第十二弹---堆的应用,数据结构,算法,c语言
数据结构第十二弹---堆的应用,数据结构,算法,c语言

2、 用数据集合中前K个元素来建堆,用剩余的N-K个元素依次与堆顶元素来比较,不满足则替换堆顶元素

此处找最大的前k个,建小堆。
建小堆大的数据才能进来,最后留下的也是大的数据。
建大堆则只能进来小的数据,不符合题意。

2.1、打开文件

//打开文件
FILE* pf = fopen("data.txt", "r");
if (pf == NULL)
{
	perror("fopen error");
	return;
}

2.2、读取文件并将前k个数据创建小堆

int* minheap = (int*)malloc(sizeof(int) * k);
if (minheap == NULL)
{
	perror("malloc fail");
	return;
}
//1.读取文件前k个建小堆 
for (int i = 0; i < k; i++)
{
	fscanf(pf, "%d", &minheap[i]);
	AdjustUp(minheap, i);
}

2.3、用剩余的N-K个元素依次与堆顶元素来比较

//2.读取文件的数据与堆顶数据进行比较 如果大则 向下调整
int x = 0;
while (fscanf(pf, "%d", &x) != EOF)
{
	if (x > minheap[0])
	{
		minheap[0] = x;
		AdjustDown(minheap, k, 0);
	}
}

2.4、将前k个数据打印出来并关闭文件

for (int i = 0; i < k; i++)
{
	printf("%d ", minheap[i]);
}
free(minheap);
fclose(pf);
pf = NULL;

测试
数据结构第十二弹---堆的应用,数据结构,算法,c语言
虽然我们打印出了前k大值,那我们怎么知道这个算法就是对的呢?

此处博主的解决办法是修改文件中的k个值,改为都是超过一千万的值,如果打印出来的K个值是修改的值,那么此算法就是正确的。

数据结构第十二弹---堆的应用,数据结构,算法,c语言
经过修改打印出来的就是修改的值,说明算法没有问题。此处如果需要升序或者降序打印,进行一个排序算法即可。

3、堆的相关习题

1.下列关键字序列为堆的是:()
A 100,60,70,50,32,65
B 60,70,65,50,32,100
C 65,100,70,32,50,60
D 70,65,100,32,50,60
E 32,50,100,70,65,60
F 50,100,70,65,60,32

数据结构第十二弹---堆的应用,数据结构,算法,c语言

2.已知小根堆为8,15,10,21,34,16,12,删除关键字 8 之后需重建堆,在此过程中,关键字之间的比较次
数是()。
A 1
B 2
C 3
D 4

数据结构第十二弹---堆的应用,数据结构,算法,c语言

3.一组记录排序码为(5 11 7 2 3 17),则利用堆排序方法建立的初始堆为
A(11 5 7 2 3 17)
B(11 5 7 2 17 3)
C(17 11 7 2 3 5)
D(17 11 7 5 3 2)
E(17 7 11 3 5 2)
F(17 7 11 3 2 5)

数据结构第十二弹---堆的应用,数据结构,算法,c语言

4.最小堆[0,3,2,5,7,4,6,8],在删除堆顶元素0之后,其结果是()
A[3,2,5,7,4,6,8]
B[2,3,5,7,4,6,8]
C[2,3,4,5,7,8,6]
D[2,3,4,5,6,7,8]

数据结构第十二弹---堆的应用,数据结构,算法,c语言

总结

本篇博客就结束啦,谢谢大家的观看,如果公主少年们有好的建议可以留言喔,谢谢大家啦!文章来源地址https://www.toymoban.com/news/detail-783013.html

到了这里,关于数据结构第十二弹---堆的应用的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【数据结构】堆的应用-----TopK问题

    目录 一、前言 二、Top-k问题   💦解法一:暴力排序 💦解法二:建立N个数的堆 💦解法三:建立K个数的堆(最优解) 三、完整代码和视图  四、共勉 在之前的文章中,已经详细的讲解了二叉树、堆、堆排序。那么关于堆还有一个比较有意思的题,就是TopK问题。 如果对堆

    2024年02月07日
    浏览(48)
  • 数据结构——堆的应用 Topk问题

    hello hello~ ,这里是大耳朵土土垚~💖💖 ,欢迎大家点赞🥳🥳关注💥💥收藏🌹🌹🌹 💥 个人主页:大耳朵土土垚的博客 💥 所属专栏:数据结构学习笔记 、C语言系列函数实现 💥对于数据结构顺序表、链表、堆有疑问的都可以在上面数据结构的专栏进行学习哦~ 有问题可

    2024年03月14日
    浏览(59)
  • 【数据结构】堆的应用——Top-K

    目录 前言: 一、Top-K问题描述: 二、不同解决思路实现: ①.排序法: ②.直接建堆法: ③.K堆法 总结:         上篇文章我们学习了二叉树的顺序存储结构,并且对于实际使用中所常用的顺序存储结构——堆的各个接口进行实现。这篇文章我们将对堆的实际应用进行更加

    2024年02月16日
    浏览(54)
  • 数据结构 - 堆(优先队列)+ 堆的应用 + 堆练习

    1、本文章适合新学和复习用,都是用c语言实现的,包含了堆的讲解、堆的应用、堆的练习。 2、有图解和代码都注释,放心食用哦 那么开始: 一、什么是堆 堆(Heap)是计算机科学中一类特殊的数据结构,是最高效的优先级队列。堆通常是一个可以被看作一棵完全二叉树的数组

    2024年03月11日
    浏览(45)
  • 【夜深人静学习数据结构与算法 | 第十二篇】动态规划——背包问题

      目录  前言:  01背包问题: 二维数组思路: 一维数组思路: 总结:       在前面我们学习动态规划理论知识的时候,我就讲过要介绍一下背包问题,那么今天我们就来讲解一下背包问题。 在这里我们只介绍 01背包 ,至于分组背包和混合背包这种的已经属于竞赛级别的

    2024年02月12日
    浏览(53)
  • 数据结构:堆的应用(堆排序和topk问题)

    个人主页 : 个人主页 个人专栏 : 《数据结构》 《C语言》 堆排序即是 先将数据建堆,再利用堆删除的思想来排序。 将待排序数组建堆 将堆顶数据与数组尾部数据交换 调整新的堆顶数据,使其保证堆的结构不变 重复2,3步直到堆中没有数据结束。 降序 建小堆 (父节点 小于

    2024年02月13日
    浏览(41)
  • 【数据结构和算法】---二叉树(2)--堆的实现和应用

    如果有一个数字集合,并把它的所有元素 按完全二叉树的顺序存储方式存储在一个一维数组中 ,且在逻辑结构(即二叉树)中,如果 每个父亲节点都大于它的孩子节点那么此堆可以称为大堆 ;那么如果 每个父亲节点都小于它的孩子节点那么此堆可以称为小堆 。 堆的 性质

    2024年02月03日
    浏览(47)
  • 【数据结构】堆的应用+TOP-K问题+二叉树遍历

    欢迎来到我的: 世界 希望作者的文章对你有所帮助,有不足的地方还请指正,大家一起学习交流 ! 该篇文章写到主要是:堆排序、 TOP-K问题、二叉树链式结构的实现、二叉树的遍历等等;如果有朋友还不太了解堆以及二叉树可以翻看我的上一篇博客:堆和二叉树的概念; 最

    2024年02月07日
    浏览(54)
  • 数据结构:手撕图解堆的实现和TopK的应用

    要讲到堆,先要说两个关于二叉树的概念 满二叉树:一个二叉树如果每一层的节点数都是最大值,那么这个二叉树就是满二叉树 完全二叉树:完全二叉树是效率很高的数据结构,完全二叉树是满二叉树的变形,对于深度为k的树有n个节点的二叉树,当且仅当其每一个节点都与

    2024年02月15日
    浏览(48)
  • 数据结构---手撕图解堆的实现和TopK的应用

    要讲到堆,先要说两个关于二叉树的概念 满二叉树:一个二叉树如果每一层的节点数都是最大值,那么这个二叉树就是满二叉树 完全二叉树:完全二叉树是效率很高的数据结构,完全二叉树是满二叉树的变形,对于深度为k的树有n个节点的二叉树,当且仅当其每一个节点都与

    2024年02月16日
    浏览(38)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包