Kafka的简介及架构

这篇具有很好参考价值的文章主要介绍了Kafka的简介及架构。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

目录

消息队列

产生背景

消息队列介绍

常见的消息队列产品

应用场景

 消息队列的消息模型

Kafka的基本介绍

简介

Kafka的架构

Kafka的使用

Kafka的shell命令

Kafka的Python API的操作

完成生产者代码

完成消费者代码


消息队列

产生背景

消息队列:指数据在一个容器中,从容器中一端传递到另一端过程

消息:指的数据,只不过这个这个数据存在一定流动状态

队列:指的容器,可以存储数据,这个容器具备FIFO(先进先出)特性

公共容器的特点:

1.公共性:各个程序都可以与之对接

2.FIFO特性:先进先出

3.具备高效的并发能力:能够承载海量数据

4.具备一定的容错能力:比如支持重新读取消息方案

消息队列介绍

常见的消息队列产品

MQ:message queue消息队列

activeMQ: 出现时期比较早的一款消息队列的中间件产品,在早期使用人群是非常多,目前整个社区活跃度严重下降,使用人群基本很少
rabbitMQ: 此款是目前使用人群比较多的一款消息队列的中间件的产品,社区活跃度比较高,主要是应用传统业务领域中
rocketMQ: 是阿里推出的一款消息队列的中间件的产品,目前主要是在阿里系环境中使用,目前支持的客户端比较少,主要是Java中应用较多
Kafka: Apache旗下的顶级开源消息,是一款消息队列的中间件产品,项目来源于领英,是大数据体系中目前为止最为常用的一款消息队列产品

应用场景

消息队列的应用场景:

1.应用解耦合

2.异步处理

3.限流削峰

4.消息驱动系统

 消息队列的消息模型

在Java中, 为了能够集成消息队列的产品, 专门提供了一个消息队列的协议: JMS(Java Message Server)  java消息服务

消息队列中两个角色:生产者(producer)和消费者(consumer)

生产者:生产/发送消息到消息队列中

消费者:从消息队列中获取消息

在JMS规范中,专门规定了两种消息消费类型:

1.点对点消费类型:一条消息最终只能被一个消费所消费,微信聊天的私聊

2.发布订阅消费模型:指一条消息最终被多个消费者所消费,微信聊天的群聊

Kafka的基本介绍

简介

Kafka是一款消息队列中间件产品,来源于领英公司,后期贡献给了Apache,目前是Apache旗下的顶级开源项目,采用语言是Scala

Kafka的特点:

1.可靠性:Kafka集群是分布式的,有多副本机制,数据可以自动复制

2.可扩展性:Kafka集群可以灵活的调整,在线扩容

3.耐用性:Kafka数据保存在磁盘上,数据有多副本机制,数据持久化,一定程度上防止数据丢失

4.高性能:Kafka可以存储海量的数据,虽然是使用磁盘进行存储,但是Kafka有各种优化手段(例如:磁盘的顺序读写,零拷贝等)提高数据的读写速度(吞吐量)

Kafka的架构

Kafka的简介及架构,kafka,架构,分布式

1. Kafka中集群节点叫broker,节点与节点之间没有主从之分,地位是完全一样

2.Topic:主题/话题,是业务层面对消息进行分类的

3.一个Topic可以设置多个分区

4.同一个partition分区可以设置多个副本,但是副本数不能超过(>)集群broker节点的个数

5.broker节点间没有主从之分,但是同一个partition分区的不同副本间有主从之分,分为Leader主副本和Follwer从副本

6.生产者将数据首先发送给到Leader主副本,接着是Leader主副本主动往Follower从副本上同步消息

7.Zookeeper用来管理集群,以及管理元数据信息

8.ISR同步列表,该列表中存放的是与Leader主副本消息同步程度最接近的Follower从副本,也就是消息最小的一个列表,该列表的作用是当Leader主副本无法对外提供服务的时候,会从该ISR列表中选择一个Follower从副本变成Leader主副本,对外提供服务

相关名词

Kafka Cluster : kafka集群

Topic : 主题/话题

Broker : Kafka中的节点

Producer : 生产者,负责生产/发送消息到Kafka中

Consumer : 消费者,负责从Kafka中获取消息

Partition : 分区,一个Topic可以设置多个分区,没有数量限制

Kafka的使用

Kafka的shell命令

      Kafka本质上是一个消息队列中间件产品,主要负责消息数据的传递,也就说学习Kafka 也就是学习如何使用Kafka生产数据,以及如何使用Kafka来消费数据

创建Topic

./kafka-topics.sh --bootstrap-server node1.itcast.cn:9092,node2.itcast.cn:9092 --create --topic test02 --partitions 4 --replication-factor 2

参数说明:

        --bootstrap-server:kafka集群中broker连接信息

        --create:指定操作类型,这里是新建Topic

        --topic:指定要新建的Topic名称

        --partitions:设置Topic的分区数

        --replicattion-factor:设置Topic分区的的副本数

注意:如果副本数超过了集群broker节点个数,会报错

查看Topic

./kafka-topics.sh --bootstrap-server node1.itcast.cn:9092,node2.itcast.cn:9092 --list

参数说明:
    --bootstrap-server: Kafka集群中broker连接信息
    --list: 指定操作类型。这里是查看Kafka集群上所有可用的Topic列表

查看具体Topic

./kafka-topics.sh --bootstrap-server node1.itcast.cn:9092,node2.itcast.cn:9092 --describe --topic test04
参数说明:
    --bootstrap-server: Kafka集群中broker连接信息
    --describe: 指定操作类型。这里是查看具体Topic信息

模拟生产者Producer

./kafka-console-producer.sh --broker-list node1.itcast.cn:9092,node2.itcast.cn:9092 --topic test04
参数说明:
    --broker-list: Kafka集群中broker连接信息
    --topic: 指定要将消息发送到哪个具体的Topic

 模拟消费者Consumer

./kafka-console-consumer.sh --bootstrap-server node1.itcast.cn:9092,node2.itcast.cn:9092 --topic test04

参数说明:
    --bootstrap-server: Kafka集群中broker连接信息
    --topic: 指定要从哪个Topic中消费消息
    --from-beginning: 指定该参数以后,会从最旧的地方开始消费
    latest: 消费者(默认)从最新的地方开始消费
    --max-messages: 最多消费的条数。满足条数后,就会自动结束
    --group: 指定消费组名称。一个消费者只能属于一个消费组;一个消费组里面可以有多个消费者。同一个Topic中的同一条数据,只能被同一个消费组中的一个消费者所消费
    
在工作中的参数一般如何使用?
答: 推荐latest、--max-messages、--group一同使用。因为实际企业中Topic的数据量是特别大的,消费、打印都需要消耗服务器的资源,如果不限定消费的最大条数,可能造成服务器宕机。

修改Topic

./kafka-topics.sh --bootstrap-server node1.itcast.cn:9092,node2.itcast.cn:9092 --alter --topic test01 --partitions 10

分区: 只能增大,不能减小。而且没有数量限制
副本: 既不能增大,也不能减小

查看消费组中有多少个消费者

./kafka-consumer-groups.sh --bootstrap-server node1.itcast.cn:9092,node2.itcast.cn:9092 --group g_01 --members --describe

Kafka的Python API的操作

准备工作:在服务器的节点上安装一个python用于操作Kafka的库

安装命令:
python -m pip install kafka-python -i https://pypi.tuna.tsinghua.edu.cn/simple

API使用的参考文档:
https://kafka-python.readthedocs.io/en/master/usage.html#kafkaproducer

完成生产者代码

import time

from kafka import KafkaProducer

# 同步发送
def sync_send():
    global topic, partition, offset
    # 2.1- 同步发送数据/消息
    metadata = producer.send("test01", value=f"hello_java_{i}".encode("UTF-8")).get()
    # metadata = producer.send("test03",value=f"hello_spark_{i}".encode("UTF-8")).get()
    # 2.2- 获取元信息中的内容
    topic = metadata.topic
    partition = metadata.partition
    """
        offset消息偏移量,从0开始编号。也就是一条消息在分区中的序号/索引
        在不同分区间,消息偏移量是无序
        在同一个分区里面,消息偏移量是有序
    """
    offset = metadata.offset
    print(f"{topic},{partition},{offset},{metadata}")


if __name__ == '__main__':

    # 1- 创建生产者
    producer = KafkaProducer(
        bootstrap_servers=["node1.itcast.cn:9092","node2.itcast.cn:9092"]
    )

    # 2- 发送消息
    for i in range(10):
        # 同步发送
        # sync_send()

        # 2.3- 异步发送
        """
            异步发送,需要等待一下,或者明确关闭Producer生产者
        """
        producer.send("test01", value=f"hello_hive_{i}".encode("UTF-8"))

    time.sleep(1)

    # 3- 释放资源/关闭生产者
    # producer.close()

Kafka的简介及架构,kafka,架构,分布式

完成消费者代码

from kafka import KafkaConsumer

if __name__ == '__main__':

    # 1- 创建消费者
    consumer = KafkaConsumer(
        "test01",
        bootstrap_servers=["node1.itcast.cn:9092", "node2.itcast.cn:9092"]
    )

    # 2- 消费消息
    for msg in consumer:
        topic = msg.topic
        partition = msg.partition
        offset = msg.offset
        # key和value消费出来都是bytes数据类型,需要进行解码
        key = msg.key
        value = msg.value

        print(f"{topic},{partition},{offset},{key},{value.decode('UTF-8')},{msg}")

 文章来源地址https://www.toymoban.com/news/detail-783127.html

到了这里,关于Kafka的简介及架构的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 分布式消息服务kafka

    什么是消息中间件? 消息中间件是分布式系统中重要的组件,本质就是一个具有接收消息、存储消息、分发消息的队列,应用程序通过读写队列消息来通信。 例如:在淘宝购物时,订单系统处理完订单后,把订单消息发送到消息中间件中,由消息中间件将订单消息分发到下

    2024年02月01日
    浏览(43)
  • 【分布式应用】kafka集群、Filebeat+Kafka+ELK搭建

    主要原因是由于在高并发环境下,同步请求来不及处理,请求往往会发生阻塞。比如大量的请求并发访问数据库,导致行锁表锁,最后请求线程会堆积过多,从而触发 too many connection 错误,引发雪崩效应。 我们使用消息队列,通过异步处理请求,从而缓解系统的压力。消息队

    2024年02月16日
    浏览(47)
  • 【分布式技术】消息队列Kafka

    目录 一、Kafka概述 二、消息队列Kafka的好处 三、消息队列Kafka的两种模式 四、Kafka 1、Kafka 定义 2、Kafka 简介 3、Kafka 的特性 五、Kafka的系统架构 六、实操部署Kafka集群  步骤一:在每一个zookeeper节点上完成kafka部署 ​编辑 步骤二:传给其他节点 步骤三:启动3个节点 kafka管理

    2024年01月23日
    浏览(51)
  • 分布式 - 消息队列Kafka:Kafka 消费者的消费位移

    01. Kafka 分区位移 对于Kafka中的分区而言,它的每条消息都有唯一的offset,用来表示消息在分区中对应的位置。偏移量从0开始,每个新消息的偏移量比前一个消息的偏移量大1。 每条消息在分区中的位置信息由一个叫位移(Offset)的数据来表征。分区位移总是从 0 开始,假设一

    2024年02月12日
    浏览(46)
  • 分布式 - 消息队列Kafka:Kafka生产者发送消息的方式

    不管是把Kafka作为消息队列、消息总线还是数据存储平台,总是需要一个可以往Kafka写入数据的生产者、一个可以从Kafka读取数据的消费者,或者一个兼具两种角色的应用程序。 Kafka 生产者是指使用 Apache Kafka 消息系统的应用程序,它们负责将消息发送到 Kafka 集群中的一个或多

    2024年02月13日
    浏览(40)
  • 分布式 - 消息队列Kafka:Kafka消费者的分区分配策略

    Kafka 消费者负载均衡策略? Kafka 消费者分区分配策略? 1. 环境准备 创建主题 test 有5个分区,准备 3 个消费者并进行消费,观察消费分配情况。然后再停止其中一个消费者,再次观察消费分配情况。 ① 创建主题 test,该主题有5个分区,2个副本: ② 创建3个消费者CustomConsu

    2024年02月13日
    浏览(43)
  • 分布式 - 消息队列Kafka:Kafka生产者发送消息的分区策略

    01. Kafka 分区的作用 分区的作用就是提供负载均衡的能力,或者说对数据进行分区的主要原因,就是为了实现系统的高伸缩性。不同的分区能够被放置到不同节点的机器上,而数据的读写操作也都是针对分区这个粒度而进行的,这样每个节点的机器都能独立地执行各自分区的

    2024年02月13日
    浏览(51)
  • 分布式 - 消息队列Kafka:Kafka消费者分区再均衡(Rebalance)

    01. Kafka 消费者分区再均衡是什么? 消费者群组里的消费者共享主题分区的所有权。当一个新消费者加入群组时,它将开始读取一部分原本由其他消费者读取的消息。当一个消费者被关闭或发生崩溃时,它将离开群组,原本由它读取的分区将由群组里的其他消费者读取。 分区

    2024年02月12日
    浏览(37)
  • 分布式 - 消息队列Kafka:Kafka 消费者消息消费与参数配置

    01. 创建消费者 在读取消息之前,需要先创建一个KafkaConsumer对象。创建KafkaConsumer对象与创建KafkaProducer对象非常相似——把想要传给消费者的属性放在Properties对象里。 为简单起见,这里只提供4个必要的属性:bootstrap.servers、key.deserializer 和 value.deserializer。 ① bootstrap.servers 指

    2024年02月12日
    浏览(42)
  • 分布式 - 消息队列Kafka:Kafka 消费者消费位移的提交方式

    最简单的提交方式是让消费者自动提交偏移量,自动提交 offset 的相关参数: enable.auto.commit:是否开启自动提交 offset 功能,默认为 true; auto.commit.interval.ms:自动提交 offset 的时间间隔,默认为5秒; 如果 enable.auto.commit 被设置为true,那么每过5秒,消费者就会自动提交 poll() 返

    2024年02月12日
    浏览(44)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包