8. 《自动驾驶与机器人中的SLAM技术》基于保存的自定义NDT地图文件进行自动驾驶车辆的激光定位

这篇具有很好参考价值的文章主要介绍了8. 《自动驾驶与机器人中的SLAM技术》基于保存的自定义NDT地图文件进行自动驾驶车辆的激光定位。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

目录

1. 为 NDT 设计一个匹配度评估指标,利用该指标可以判断 NDT 匹配的好坏。

2. 利用第 1 题的指标,修改程序,实现 mapping 部分的回环检测。

3. 将建图结果导出为 NDT map,即将 NDT 体素内的均值和协方差都存储成文件。

4. 实现基于 NDT map 的激光定位。根据车辆实时位姿,加载所需的 NDT 体素并完成定位。

5. 给出上述结果相比于 PCL NDT 的性能、存储空间等关键指标

1. 为 NDT 设计一个匹配度评估指标,利用该指标可以判断 NDT 匹配的好坏。

8. 《自动驾驶与机器人中的SLAM技术》基于保存的自定义NDT地图文件进行自动驾驶车辆的激光定位,SLAM学习,自动驾驶,机器人,人工智能

2. 利用第 1 题的指标,修改程序,实现 mapping 部分的回环检测。

8. 《自动驾驶与机器人中的SLAM技术》基于保存的自定义NDT地图文件进行自动驾驶车辆的激光定位,SLAM学习,自动驾驶,机器人,人工智能

8. 《自动驾驶与机器人中的SLAM技术》基于保存的自定义NDT地图文件进行自动驾驶车辆的激光定位,SLAM学习,自动驾驶,机器人,人工智能

8. 《自动驾驶与机器人中的SLAM技术》基于保存的自定义NDT地图文件进行自动驾驶车辆的激光定位,SLAM学习,自动驾驶,机器人,人工智能

8. 《自动驾驶与机器人中的SLAM技术》基于保存的自定义NDT地图文件进行自动驾驶车辆的激光定位,SLAM学习,自动驾驶,机器人,人工智能文章来源地址https://www.toymoban.com/news/detail-783413.html

下图是 PCL 版本 NDT 匹配,在阈值设置( ndt_score_th )为 4.5 时的匹配结果( 其中加载
的关键帧数目我删掉了一些,因为实在是耗时有点久。。。)
8. 《自动驾驶与机器人中的SLAM技术》基于保存的自定义NDT地图文件进行自动驾驶车辆的激光定位,SLAM学习,自动驾驶,机器人,人工智能
根据上面 PCL 版本的 NDT 检测结果来确定适配自定义指标的阈值( ndt_score_th )。
8. 《自动驾驶与机器人中的SLAM技术》基于保存的自定义NDT地图文件进行自动驾驶车辆的激光定位,SLAM学习,自动驾驶,机器人,人工智能
使用原来的阈值明显不对,观察,得分在 0.2 附近,于是试着在这个范围寻找合适的阈值。
8. 《自动驾驶与机器人中的SLAM技术》基于保存的自定义NDT地图文件进行自动驾驶车辆的激光定位,SLAM学习,自动驾驶,机器人,人工智能
可见,阈值设置为 0.15 pcl 版本的阈值为 4.5 时的结果差不多。

3. 将建图结果导出为 NDT map,即将 NDT 体素内的均值和协方差都存储成文件。

这里参考 split_map.cc 代码的内容:加载关键帧对应的点云,对其进行滤波,然后计算点
云中的每个点对应的地图区块 id ,最后将区块索引和对应点云分别存储起来。
我们要导出 NDT map ,需要构建 NDT 体素并计算均值和协方差,这些在第七章的 ndt_3d.h
SetTarge 函数中已经实现。
8. 《自动驾驶与机器人中的SLAM技术》基于保存的自定义NDT地图文件进行自动驾驶车辆的激光定位,SLAM学习,自动驾驶,机器人,人工智能
8. 《自动驾驶与机器人中的SLAM技术》基于保存的自定义NDT地图文件进行自动驾驶车辆的激光定位,SLAM学习,自动驾驶,机器人,人工智能
8. 《自动驾驶与机器人中的SLAM技术》基于保存的自定义NDT地图文件进行自动驾驶车辆的激光定位,SLAM学习,自动驾驶,机器人,人工智能
保存的结果:
8. 《自动驾驶与机器人中的SLAM技术》基于保存的自定义NDT地图文件进行自动驾驶车辆的激光定位,SLAM学习,自动驾驶,机器人,人工智能

4. 实现基于 NDT map 的激光定位。根据车辆实时位姿,加载所需的 NDT 体素并完成定位。

原先基于点云地图的激光定位使用的是 PCL 版本 NDT RTK 角度搜索中用到了 10 米, 5 米, 4 米, 2 米的多分辨率 NDT 匹配来确定 RTK 的朝向,所以实现基于 NDT map 的激光定位,也需要加载多分辨率 的体素,所以参照第 3 题重新修改为保存多分辨率的 NDT map 。代码如下:
8. 《自动驾驶与机器人中的SLAM技术》基于保存的自定义NDT地图文件进行自动驾驶车辆的激光定位,SLAM学习,自动驾驶,机器人,人工智能
8. 《自动驾驶与机器人中的SLAM技术》基于保存的自定义NDT地图文件进行自动驾驶车辆的激光定位,SLAM学习,自动驾驶,机器人,人工智能
存储 NDT 体素中的均值和协方差矩阵信息。
8. 《自动驾驶与机器人中的SLAM技术》基于保存的自定义NDT地图文件进行自动驾驶车辆的激光定位,SLAM学习,自动驾驶,机器人,人工智能
①首先,在 fusion 初始化时配置要加载的 NDT map 路径,并参考原来的 loadMapIdex()
数,将多分辨率的 NDT 地图数据加载进来。
8. 《自动驾驶与机器人中的SLAM技术》基于保存的自定义NDT地图文件进行自动驾驶车辆的激光定位,SLAM学习,自动驾驶,机器人,人工智能
8. 《自动驾驶与机器人中的SLAM技术》基于保存的自定义NDT地图文件进行自动驾驶车辆的激光定位,SLAM学习,自动驾驶,机器人,人工智能
②接下来就是定位流程 ProcessMeasurements(m) 。首先要确定 RTK 朝向,加载多分辨率
NDT map ,使用多分辨率来进行寻找。
8. 《自动驾驶与机器人中的SLAM技术》基于保存的自定义NDT地图文件进行自动驾驶车辆的激光定位,SLAM学习,自动驾驶,机器人,人工智能
8. 《自动驾驶与机器人中的SLAM技术》基于保存的自定义NDT地图文件进行自动驾驶车辆的激光定位,SLAM学习,自动驾驶,机器人,人工智能
8. 《自动驾驶与机器人中的SLAM技术》基于保存的自定义NDT地图文件进行自动驾驶车辆的激光定位,SLAM学习,自动驾驶,机器人,人工智能
当然,同样也要准备卸载超出范围的 NDT 地图。
8. 《自动驾驶与机器人中的SLAM技术》基于保存的自定义NDT地图文件进行自动驾驶车辆的激光定位,SLAM学习,自动驾驶,机器人,人工智能
以上过程包含在 loadNdtMap 函数中。
8. 《自动驾驶与机器人中的SLAM技术》基于保存的自定义NDT地图文件进行自动驾驶车辆的激光定位,SLAM学习,自动驾驶,机器人,人工智能
RTK 初始化成功后后续定位流程在 LidarLocalization() 中进行。
8. 《自动驾驶与机器人中的SLAM技术》基于保存的自定义NDT地图文件进行自动驾驶车辆的激光定位,SLAM学习,自动驾驶,机器人,人工智能
至此,实现了基于 NDT map 进行激光定位的功能。
③实现效果:
8. 《自动驾驶与机器人中的SLAM技术》基于保存的自定义NDT地图文件进行自动驾驶车辆的激光定位,SLAM学习,自动驾驶,机器人,人工智能
8. 《自动驾驶与机器人中的SLAM技术》基于保存的自定义NDT地图文件进行自动驾驶车辆的激光定位,SLAM学习,自动驾驶,机器人,人工智能
两者定位效果差不多。

5. 给出上述结果相比于 PCL NDT 的性能、存储空间等关键指标。

①统计比较两者在加载地图和配准过程两方面的耗时情况。
8. 《自动驾驶与机器人中的SLAM技术》基于保存的自定义NDT地图文件进行自动驾驶车辆的激光定位,SLAM学习,自动驾驶,机器人,人工智能
8. 《自动驾驶与机器人中的SLAM技术》基于保存的自定义NDT地图文件进行自动驾驶车辆的激光定位,SLAM学习,自动驾驶,机器人,人工智能
可以发现,基于 NDT map 的方法,加载地图数据耗时要比加载点云要慢很多;而配准方面
会快很多。
比较一下跑完一个 bag ,总的耗时情况。
8. 《自动驾驶与机器人中的SLAM技术》基于保存的自定义NDT地图文件进行自动驾驶车辆的激光定位,SLAM学习,自动驾驶,机器人,人工智能
8. 《自动驾驶与机器人中的SLAM技术》基于保存的自定义NDT地图文件进行自动驾驶车辆的激光定位,SLAM学习,自动驾驶,机器人,人工智能
经过对比发现,基于 NDT map 的激光雷达定位效率是基于 PCL NDT 的接近六倍。
②统计比较两者需要加载的地图数据占存储大小。
原先加载的是以 100x100 大小地图区块索引命名的 pcd 格式点云数据,而现在需要加载 4
种不同分辨率的 NDT 体素地图数据中,仅存储了均值和信息矩阵。因此存储空间应该要小得多,果然,对比如下:
8. 《自动驾驶与机器人中的SLAM技术》基于保存的自定义NDT地图文件进行自动驾驶车辆的激光定位,SLAM学习,自动驾驶,机器人,人工智能

到了这里,关于8. 《自动驾驶与机器人中的SLAM技术》基于保存的自定义NDT地图文件进行自动驾驶车辆的激光定位的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 《机器人SLAM导航核心技术与实战》第1季:第5章_机器人主机

    《机器人SLAM导航核心技术与实战》第1季:第5章_机器人主机 视频讲解 【第1季】5.第5章_机器人主机-视频讲解 【第1季】5.1.第5章_机器人主机_X86与ARM主机对比-视频讲解 【第1季】5.2.第5章_机器人主机_ARM主机树莓派3B+-视频讲解 【第1季】5.3.第5章_机器人主机_ARM主机RK3399-视频讲

    2024年02月08日
    浏览(46)
  • 基于机器人自主移动实现SLAM建图

    博客地址:https://www.cnblogs.com/zylyehuo/ 基于[移动机器人运动规划及运动仿真],详见之前的博客 移动机器人运动规划及运动仿真 - zylyehuo - 博客园 参考链接 Autolabor-ROS机器人入门课程《ROS理论与实践》 ubuntu 18.04

    2024年02月05日
    浏览(44)
  • ChatGPT +工业机器人/自动驾驶控制器的一些尝试

    ChatGPT 的功能目前已扩展到机器人领域,可以用语言直观控制如机械臂、无人机、家庭辅助机器人等的多个平台。这会改变人机交互的未来形式吗? 你可曾想过用自己的话告诉机器人该做什么,就像对人说话那样? 比如说,只要告诉你的家庭助理机器人「请帮我热一下午餐」

    2023年04月08日
    浏览(51)
  • 高翔《自动驾驶中的SLAM技术》代码详解 — 第6章 2D SLAM

    目录 6.2 扫描匹配算法 6.2.1 点到点的扫描匹配 6.2.1 点到点的扫描匹配

    2024年02月14日
    浏览(39)
  • 基于Gazebo搭建移动机器人,并结合SLAM系统完成建图仿真

    博客地址:https://www.cnblogs.com/zylyehuo/ gazebo小车模型创建及仿真详见之前博客 gazebo小车模型(附带仿真环境) - zylyehuo - 博客园 gazebo+rviz 仿真 - zylyehuo - 博客园 参考链接 Autolabor-ROS机器人入门课程《ROS理论与实践》 安装 gmapping 包(用于构建地图): sudo apt install ros-melodic-gmapping 安

    2024年02月04日
    浏览(51)
  • 基于Gazebo搭建移动机器人,并结合SLAM系统完成定位和建图仿真

    博客地址:https://www.cnblogs.com/zylyehuo/ gazebo小车模型创建及仿真详见之前博客 gazebo小车模型(附带仿真环境) - zylyehuo - 博客园 gazebo+rviz 仿真 - zylyehuo - 博客园 参考链接 Autolabor-ROS机器人入门课程《ROS理论与实践》 安装 gmapping 包(用于构建地图): sudo apt install ros-melodic-gmapping 安

    2024年02月04日
    浏览(46)
  • 医疗机器人软件中的机器人协作技术:机器人技术在医疗保健中的应用

    作者:禅与计算机程序设计艺术 引言 医疗机器人软件中机器人协作技术是近年来备受关注的研究热点。随着机器人技术的不断发展,医疗机器人应用的范围也越来越广泛。机器人协作技术可以为医疗机器人提供更加高效、精确、安全、可靠的操作,大大提高医疗服务的质量

    2024年02月06日
    浏览(63)
  • 医疗机器人软件中的机器人机器人编程技术:机器人技术的创新应用

    作者:禅与计算机程序设计艺术 随着科技的发展,医疗机器人逐渐成为人们关注的热门话题。医疗机器人可以在医院、康复中心等各种场合为病人提供帮助,不仅可以提高工作效率,还能降低医护人员的工作强度。而机器人编程技术则是实现医疗机器人功能的关键,本文将围

    2024年02月07日
    浏览(66)
  • RPA自动化中的机器人开发:如何开发机器人软件

    随着工业4.0时代的到来,企业对于提高生产效率、降低成本的需求越来越强烈,机器人自动化技术作为其中的一部分,逐渐被广泛应用。机器人自动化技术的其中一个分支——机器人软件,对于机器人的开发和应用具有重要的推动作用。本文旨在介绍如何进行机器人软件的开

    2024年02月13日
    浏览(57)
  • 智能机器人:打造自动化未来的关键技术

    🎉欢迎来到AIGC人工智能专栏~智能机器人:打造自动化未来的关键技术 ☆* o(≧▽≦)o *☆嗨~我是IT·陈寒🍹 ✨博客主页:IT·陈寒的博客 🎈该系列文章专栏:AIGC人工智能 📜其他专栏:Java学习路线 Java面试技巧 Java实战项目 AIGC人工智能 数据结构学习 🍹文章作者技术和水平

    2024年02月09日
    浏览(51)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包